基于__torch_dispatch__机制的dump方法
- 1.参考链接
- 2.原理
- 3.代码
- 4.效果
之前拦截torch和torch.Tensor的办法,在处理backward时,不能看到aten算子的细节.以下基于__torch_dispatch__机制的方案更节约代码,且能看到调用栈
1.参考链接
[原理] (https://dev-discuss.pytorch.org/t/what-and-why-is-torch-dispatch/557)
2.原理
3.代码
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
import torch
from torch import nn
import math
import torch.nn.functional as F
from torch.autograd import Variable
import time
import os
import threading
device="cuda"
from torch.utils._python_dispatch import TorchDispatchMode
import inspect
import traceback
from dataclasses import dataclass
from typing import Any
@dataclass
class _ProfilerState:
cls: Any
object: Any = None
lock=threading.Lock()
gindex=0
def save_tensor(name,args,index=0):
if isinstance(args,torch.Tensor):
print(name,index,args.shape)
global gindex
lock.acquire()
torch.save(args,"{}_{}_{}_{}.pt".format(device,gindex,name,index))
gindex+=1
lock.release()
if isinstance(args,tuple):
for idx,x in enumerate(args):
save_tensor(name,x,index+idx)
class TorchDumpDispatchMode(TorchDispatchMode):
def __init__(self,parent):
super().__init__()
self.parent=parent
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
func_packet = func._overloadpacket
if kwargs is None:
kwargs = {}
enable_dump=False
if func_packet.__name__ not in ["detach"]:
enable_dump=True
print(f"Profiling {func_packet.__name__}")
for idx,stack in enumerate(inspect.stack()):
print(f'{"*"*idx}{stack.filename}{stack.lineno}')
if enable_dump:
save_tensor(f"{func_packet.__name__}-input",args)
ret= func(*args, **kwargs)
if enable_dump:
save_tensor(f"{func_packet.__name__}-output",ret)
return ret
class TorchDumper:
_CURRENT_Dumper = None
def __init__(self,schedule: Any):
self.p= _ProfilerState(schedule)
def __enter__(self):
assert TorchDumper._CURRENT_Dumper is None
TorchDumper._CURRENT_Dumper = self
if self.p.object is None:
o = self.p.cls(self)
o.__enter__()
self.p.object = o
else:
self.p.object.step()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
TorchDumper._CURRENT_Dumper = None
if self.p.object is not None:
self.p.object.__exit__(exc_type, exc_val, exc_tb)
class Attention(nn.Module):
def __init__(self,max_seq_len,head_dim,flash):
super().__init__()
self.flash = flash
self.dropout=0
self.attn_dropout = nn.Dropout(self.dropout)
self.head_dim=head_dim
if not self.flash:
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
mask = torch.full((1, 1, max_seq_len, max_seq_len), float("-inf")).to(device)
mask = torch.triu(mask, diagonal=1).half().to(device)
self.register_buffer("mask", mask)
def forward(
self,xq: torch.Tensor,xk: torch.Tensor,xv: torch.Tensor):
if self.flash:
output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv,
attn_mask=None,
dropout_p=self.dropout if self.training else 0.0, is_causal=True)
else:
_xk=xk.clone()
t=_xk.transpose(2, 3)
scores = torch.matmul(xq,t)
scores = scores/math.sqrt(self.head_dim)
a=self.mask[:, :, :seqlen, :seqlen]
scores = scores+a
scores = F.softmax(scores.float(), dim=-1)
scores = scores.type_as(xq)
scores = self.attn_dropout(scores)
output = torch.matmul(scores, xv)
return output
def main(flash,bs, n_local_heads, seqlen, head_dim):
torch.random.manual_seed(1)
q = torch.ones((bs, n_local_heads, seqlen, head_dim),dtype=torch.float32).half().to(device)
k = torch.ones((bs, n_local_heads, seqlen, head_dim),dtype=torch.float32).half().to(device)
v = torch.ones((bs, n_local_heads, seqlen, head_dim),dtype=torch.float32).half().to(device)
q.data.normal_(0, 0.1)
k.data.normal_(0, 0.1)
v.data.normal_(0, 0.1)
q=Variable(q, requires_grad=True).to(device)
k=Variable(k, requires_grad=True).to(device)
v=Variable(v, requires_grad=True).to(device)
gt= torch.randint(0,head_dim,(bs*n_local_heads*seqlen,1)).reshape(-1).to(device)
loss_func=nn.CrossEntropyLoss().to(device)
model=Attention(seqlen,head_dim,flash).half().to(device)
optim = torch.optim.SGD([q,k,v], lr=1.1)
with TorchDumper(TorchDumpDispatchMode):
for i in range(1):
output = model(q,k,v)
loss=loss_func(output.reshape(-1,head_dim),gt)
loss.backward()
optim.step()
print("{:.5f},{:.5f},{:.5f},{:.5f}".format(q.sum().item(),k.sum().item(),v.sum().item(),loss.item()))
bs, n_local_heads, seqlen, head_dim = 8, 8, 512, 64
main(False,bs, n_local_heads, seqlen, head_dim)
4.效果
Profiling clone
/home/user/proj/attention/attention_torch_dispatch_dumper.py60
*/home/user/proj/attention/attention_torch_dispatch_dumper.py109
**/home/anaconda3/envs/nvidia_training/lib/python3.10/site-packages/torch/nn/modules/module.py1527
***/home/anaconda3/envs/nvidia_training/lib/python3.10/site-packages/torch/nn/modules/module.py1518
****/home/user/proj/attention/attention_torch_dispatch_dumper.py144
*****/home/user/proj/attention/attention_torch_dispatch_dumper.py151
clone-input 0 torch.Size([8, 8, 512, 64])
clone-output 0 torch.Size([8, 8, 512, 64])
Profiling transpose
/home/user/proj/attention/attention_torch_dispatch_dumper.py60
*/home/user/proj/attention/attention_torch_dispatch_dumper.py110
**/home/anaconda3/envs/nvidia_training/lib/python3.10/site-packages/torch/nn/modules/module.py1527
***/home/anaconda3/envs/nvidia_training/lib/python3.10/site-packages/torch/nn/modules/module.py1518
****/home/user/proj/attention/attention_torch_dispatch_dumper.py144
*****/home/user/proj/attention/attention_torch_dispatch_dumper.py151
transpose-input 0 torch.Size([8, 8, 512, 64])
transpose-output 0 torch.Size([8, 8, 512, 64])
Profiling expand
/home/user/proj/attention/attention_torch_dispatch_dumper.py60
*/home/user/proj/attention/attention_torch_dispatch_dumper.py111
**/home/anaconda3/envs/nvidia_training/lib/python3.10/site-packages/torch/nn/modules/module.py1527
***/home/anaconda3/envs/nvidia_training/lib/python3.10/site-packages/torch/nn/modules/module.py1518
****/home/user/proj/attention/attention_torch_dispatch_dumper.py144
*****/home/user/proj/attention/attention_torch_dispatch_dumper.py151
expand-input 0 torch.Size([8, 8, 512, 64])
expand-output 0 torch.Size([8, 8, 512, 64])
Profiling view
/home/user/proj/attention/attention_torch_dispatch_dumper.py60
*/home/user/proj/attention/attention_torch_dispatch_dumper.py111
**/home/anaconda3/envs/nvidia_training/lib/python3.10/site-packages/torch/nn/modules/module.py1527
***/home/anaconda3/envs/nvidia_training/lib/python3.10/site-packages/torch/nn/modules/module.py1518
****/home/user/proj/attention/attention_torch_dispatch_dumper.py144
*****/home/user/proj/attention/attention_torch_dispatch_dumper.py151
view-input 0 torch.Size([8, 8, 512, 64])
view-output 0 torch.Size([8, 8, 512, 64])
Profiling expand
/home/user/proj/attention/attention_torch_dispatch_dumper.py60
*/home/user/proj/attention/attention_torch_dispatch_dumper.py111
**/home/anaconda3/envs/nvidia_training/lib/python3.10/site-packages/torch/nn/modules/module.py1527
***/home/anaconda3/envs/nvidia_training/lib/python3.10/site-packages/torch/nn/modules/module.py1518
****/home/user/proj/attention/attention_torch_dispatch_dumper.py144
*****/home/user/proj/attention/attention_torch_dispatch_dumper.py151
expand-input 0 torch.Size([8, 8, 64, 512])
expand-output 0 torch.Size([8, 8, 64, 512])
Profiling view
/home/user/proj/attention/attention_torch_dispatch_dumper.py60
*/home/user/proj/attention/attention_torch_dispatch_dumper.py111
**/home/anaconda3/envs/nvidia_training/lib/python3.10/site-packages/torch/nn/modules/module.py1527
***/home/anaconda3/envs/nvidia_training/lib/python3.10/site-packages/torch/nn/modules/module.py1518
****/home/user/proj/attention/attention_torch_dispatch_dumper.py144
*****/home/user/proj/attention/attention_torch_dispatch_dumper.py151
view-input 0 torch.Size([8, 8, 64, 512])
view-output 0 torch.Size([8, 8, 64, 512])
Profiling bmm
/home/user/proj/attention/attention_torch_dispatch_dumper.py60
*/home/user/proj/attention/attention_torch_dispatch_dumper.py111
**/home/anaconda3/envs/nvidia_training/lib/python3.10/site-packages/torch/nn/modules/module.py1527
***/home/anaconda3/envs/nvidia_training/lib/python3.10/site-packages/torch/nn/modules/module.py1518
****/home/user/proj/attention/attention_torch_dispatch_dumper.py144
*****/home/user/proj/attention/attention_torch_dispatch_dumper.py151
bmm-input 0 torch.Size([64, 512, 64])
bmm-input 1 torch.Size([64, 64, 512])
bmm-output 0 torch.Size([64, 512, 64])
bmm-output 1 torch.Size([64, 64, 512])
Profiling _unsafe_view