DS进阶:并查集

一、并查集的原理

        在一些应用问题中,需要将n个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元素集合,然后按一定的规律将归于同一组元素的集合合并在此过程中要反复用到查询某一个元素归属于那个集合的运算。适合于描述这类问题的抽象数据类型称为并查集(union-find
set)。

        这样讲可能有点抽象,下面我通过一个故事来帮助大家理解这个并查集的现实意义。

        这是一个充满打打杀杀的江湖,每个人都混迹在江湖之中,去追寻自己的理想和抱负,时常会因为信仰不同而聚众斗殴,江湖上常常乱作一团,但是也有时也会因为信仰相同,结成好朋友,共同对抗别人,随着时间的增长,不同的团体规模也在不断扩大,大家也在尝试去依附团体生存。于是就形成了不同的帮派。

        帮派的形成本身就是为了能够有自己的盟友去帮助合力对抗外人,这个时候就出现了一个问题,我们如何去分辨自己的盟友呢?? 避免打错人呢?? 所以为了解决这个问题,每个帮派都需要有一个掌门人,这样在决斗的时候,双方通过自报家门,就能知道是自己人还是敌人了。

      接下来我们来通过并查集模拟形成帮派的过程

       从上图可以看出,并查集其实是一种树形结构,只不过用的是双亲表示法。 

通过以上例子可知,并查集一般可以解决一下问题:
1. 查找元素属于哪个集合
沿着数组表示树形关系以上一直找到根(即:树中中元素为负数的位置)
2. 查看两个元素是否属于同一个集合
沿着数组表示的树形关系往上一直找到树的根,如果根相同表明在同一个集合,否则不在
3. 将两个集合归并成一个集合
将两个集合中的元素合并
将一个集合名称改成另一个集合的名称
4. 集合的个数
遍历数组,数组中元素为负数的个数即为集合的个数。
 

二、并查集的模拟实现

      我们封装并查集,需要有一个vector<int>类型的成员函数。

2.1 并查集的初始化

UnionFindSet(size_t n)
	:_set(n, -1) //初始化成-1  并查集的初始状态
{}

直接调用vector的构造函数。初始化成-1 

2.2 寻找某节点的根Findroot

       两个高手刚见面,首先就得自报家门,看看自己的老大是不是同一个,这样才能决定是打一架还是吃个饭。因此我们要实现一个Findroot 。

size_t Findroot(size_t x)
{
	while (_set[x] >= 0)  x = _set[x]; //去找根节点 
	return x;
}

 但是这样真的好吗???

 我们用递归的方式去修改,不断去修改我们要查找节点的前驱节点,这样在下一次找这个数的时候,必然只需要O(1)的时间复杂度就可以完成了!

int Findroot(int x)     				//查找结点 x的根结点 
{
	if (_set[x]< 0)  return x;		//递归出口:x的上级为 x本身,即 x为根结点        
	return _set[x] = Findroot(_set[x]);	//此代码相当于先找到根结点 rootx,然后_set[x]=rootx 
}

2.3 合并两个集合union

      我们俩要结盟,在结盟之前,我们要先判断我们俩是不是自己人,所以要先找到我们的老大。如果我们的老大是同一个,那么就没有必要再结盟,但是如果我们俩不是同一个老大,这个时候结盟前就需要有一个老大去当另一个老大的小弟。两个谁也不服谁,所以只能比一下谁人多,最后人少听人多的。

      所以我们找到老大后,还需要判断老大手下有多少人,谁人少,就将所有人划分到人多的那一边去。

	bool Union(int x, int y)  //优化思路  大树管小树
	{
		int root1 = Findroot(x);
		int root2 = Findroot(y);
		if (root1 == root2) return false;//说明两个在一个集合,所以没有必要去合并
		//此时说明可以合并了
		if (_set[root1] > _set[root2]) swap(root1, root2);  //_set[root1] 表示root1手下有多少人 手下人少投靠手下人多的
		_set[root1] += _set[root2];//我把我手下的人包括我自己归属于你
		_set[root2] = root1;//你成为我的上级。
		return true;
	}

  其实该方式本质上也是为了尽可能地降低整体节点的深度,方便查找可以更快。

2.4 统计并查集中一共有多少个集合

遍历一遍并查集,数一下有多少个掌门人即可

size_t SetCount()//查找一共有几个集合
{
	size_t count = 0;
	for (auto& e : _set)
		if (e < 0)  ++count;
	return count;
}

2.5 并查集的整体代码实现 

#include<vector>
#include<iostream>
using namespace std;
 
class UnionFindSet //利用的是双亲表示法
{ 
public:
	UnionFindSet(size_t n)
		:_set(n, -1) //初始化成-1  并查集的初始状态
	{}

    size_t Findroot(size_t x) //非压缩版本
{
	while (_set[x] >= 0)  x = _set[x]; //去找根节点 
	return x;
}

	int Findroot(int x)     				//查找结点 x的根结点   压缩版本
	{
		if (_set[x]< 0)  return x;		//递归出口:x的上级为 x本身,即 x为根结点        
		return _set[x] = Findroot(_set[x]);	//此代码相当于先找到根结点 rootx,然后_set[x]=rootx 
	}


	bool Union(int x, int y)  //优化思路  大树管小树
	{
		int root1 = Findroot(x);
		int root2 = Findroot(y);
		if (root1 == root2) return false;//说明两个在一个集合,所以没有必要去合并
		//此时说明可以合并了
		if (_set[root1] > _set[root2]) swap(root1, root2);  //_set[root1] 表示root1手下有多少人 手下人少投靠手下人多的
		_set[root1] += _set[root2];//我把我手下的人包括我自己归属于你
		_set[root2] = root1;//你成为我的上级。
		return true;
	}

	size_t SetCount()//查找一共有几个集合
	{
		size_t count = 0;
		for (auto& e : _set)
			if (e < 0)  ++count;
		return count;
	}

private:
	vector<int> _set;// 并查集
};

三、并查集的相关OJ题

          并查集的主要作用是求连通分支数(如果一个图中所有点都存在可达关系(直接或间接相连),则此图的连通分支数为1;如果此图有两大子图各自全部可达,则此图的连通分支数为2……)

3.1 省份数量

. - 力扣(LeetCode)

 这边重点使用并查集的思想解决问题

      我们会发现这道题的本质其实是,如果两个城市相连就要将他丢进集合里,最后看看并查集里面有几个集合就代表有几个省份。

我们直接用我们之前实现过的并查集来解决问题!!

解法1:手撕并查集

class UnionFindSet //利用的是双亲表示法
{ 
public:
	UnionFindSet(size_t n)
		:_set(n, -1) //初始化成-1  并查集的初始状态
	{}

	int Findroot(int x)     				//查找结点 x的根结点   优化
{
	if (_set[x]< 0)  return x;		//递归出口:x的上级为 x本身,即 x为根结点        
	return _set[x] = Findroot(_set[x]);	//此代码相当于先找到根结点 rootx,然后_set[x]=rootx 
}

	bool Union(int x, int y)
	{
		int root1 = Findroot(x);
		int root2 = Findroot(y);
		if (root1 == root2) return false;//说明两个在一个集合,所以没有必要去合并
		//此时说明可以合并了
        if (_set[root1] > _set[root2]) swap(root1, root2);  //_set[root1] 表示root1手下有多少人 手下人少投靠手下人多的
		_set[root1] += _set[root2];//我把我手下的人包括我自己归属于你
		_set[root2] = root1;//你成为我的上级。
		return true;
	}

	size_t SetCount()//查找一共有几个集合
	{
		size_t count = 0;
		for (auto& e : _set)
			if (e < 0)  ++count;
		return count;
	}

private:
	vector<int> _set;// 并查集
};

class Solution {
public:
    int findCircleNum(vector<vector<int>>& isConnected) {
         UnionFindSet set(isConnected.size());//创建一个并查集
         for(int i=0;i<isConnected.size();++i)
           for(int j=0;j<isConnected[0].size();++j)
             if(isConnected[i][j] == 1) //丢到集合里
                 set.Union(i,j);
            return set.SetCount();//返回集合的个数
    } 
};

      如果并查集是库里面的,这样做真的很方便,但是实际上我们要使用的话都得自己封装,如果这仅仅是一道OJ题,显然是没有必要的,因为复用性并不高。所以我们按照并查集的逻辑去解题,但是不要真的去实现

解法2:不手撕并查集,但是按照并查集的逻辑去解决问题。

这边针对这一道题,我们可以直接使用lambda表达式去简化我们的代码

class Solution {
public:
    int findCircleNum(vector<vector<int>>& isConnected) 
    {
       vector<int> ufs(isConnected.size(),-1);
          auto Findroot=[&ufs](int x)
          {
              while(ufs[x]>=0) x=ufs[x];
                   return x;            
           };
         for(int i=0;i<isConnected.size();++i)
           for(int j=0;j<isConnected[0].size();++j)
             if(isConnected[i][j] == 1) //丢到集合里
                 {
                       int root1 = Findroot(i);
                       int root2 = Findroot(j);
                       if(root1 != root2)
                       {
                 if (ufs[root1] > ufs[root2]) swap(root1, root2); 
                       ufs[root1] += ufs[root2];
                       ufs[root2] = root1;
                       }
                 }
                 size_t count = 0;
                 for (auto& e :ufs)
	               if (e < 0)  ++count;
                     return count;
    } 
};

3.2 等式方程的可满足性

. - 力扣(LeetCode)

      解决思路就是第一遍我们先将所有相等的值加到一个集合里,然后第二遍去判断不相等的值是否在一个集合里,如果是的话就是错误的。

class Solution {
public:
    bool equationsPossible(vector<string>& equations) {
          vector<int> ufs(26,-1); 
          auto Findroot=[&ufs](int x)
          {
              while(ufs[x]>=0) x=ufs[x];
                   return x;            
           };
         for(auto&s:equations)
         {
            if(s[1]=='=')//必然是相等的
            {
               int root1=Findroot(s[0]-'a');
               int root2=Findroot(s[3]-'a');
               if(root1!=root2)
               {
                if(ufs[root1]>ufs[root2]) swap(root1,root2);
                    //进行合并
                  ufs[root1]+=ufs[root2];//吞并另一个老大的人
                  ufs[root2]=root1;//服从指挥
               }
            }
         }
          //第二遍 看看是否不是一个集合的
           for(auto&s:equations)
         {
            if(s[1]=='!')//必然是相等的
            {
               int root1=Findroot(s[0]-'a');
               int root2=Findroot(s[3]-'a');
               if(root1==root2)  return false;
            }
         }
         return true;
    }
};

     
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/577107.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Taro +vue3 中实现全局颜色css变量的设置和使用

当我们现在需要弄一个随时修改的页面颜色主题色 我们可以随时修改 我使用的是 Taro 框架 一般有一个app.less 文件 我们在这个里面 设置一个root 全局样式 :root {--primary-color: #028fd4;--secondary-color: #028fd6;/* 添加其他颜色变量 */ } 这样在全局我们就可以使用这…

uniapp 微信小程序 分享海报的实现

主页面 <template><view class"page"><!-- 自定义导航栏--><Navbar title"我的海报"></Navbar><view class"container"><poster ref"poster" :imageUrl"image" :imageWidth"7…

python之List列表

1. 高级数据类型 Python中的数据类型可以分为&#xff1a;数字型&#xff08;基本数据类型&#xff09;和非数字型&#xff08;高级数据类型&#xff09; 数字型包含&#xff1a;整型int、浮点型float、布尔型bool、复数型complex 非数字型包含&#xff1a;字符串str、列表l…

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(四)分组多查询注意力

探索和构建 LLaMA 3 架构&#xff1a;深入探讨组件、编码和推理技术&#xff08;四&#xff09;分组多查询注意力 Grouped-query Attention&#xff0c;简称GQA 分组查询注意力&#xff08;Grouped-query Attention&#xff0c;简称GQA&#xff09;是多查询和多头注意力的插值…

【35分钟掌握金融风控策略10】风控策略部署2

目录 策略部署 决策引擎系统简介 基于决策引擎进行策略部署 策略部署结果验证 知识点补充 测试验证 回溯比对 策略部署 策略主要部署在决策引擎上进行风险决策&#xff0c;接下来分别介绍决策引擎系统&#xff0c;以及基于决策引擎进行策略部署的相关内容。 决策引擎系…

java-Spring-(MyBatis框架-xml管理)

目录 前置条件 xml与注解比较 1.1 xml定义 1.2 和SQL注解比较 建包准备 插入数据 ​编辑 更新数据 删除数据 查询数据 查看单字段查询 &#x1f3f7;&#x1f4a3;前置条件 创建一个spring boot 初始化的项目 &#x1f3f7;&#x1f4a3;xml与注解比较 1.1 xml定义 …

微信小程序简单实现购物车功能

微信小程序简单实现购物车结算和购物车列表展示功能 实现在微信小程序中对每一个购物车界面的商品订单&#xff0c;进行勾选结算和取消结算的功能&#xff0c;相关界面截图如下&#xff1a; 具体实现示例代码为&#xff1a; 1、js代码&#xff1a; Page({/*** 页面的初始数…

SpringCloudAlibaba:2.1nacos

概述 概述 简介 Nacos是阿里巴巴开源的服务注册中心以及配置中心 Nacos注册中心Eureka 服务配置Config 服务总线Bus 官网 Nacos官网 | Nacos 官方社区 | Nacos 下载 | Nacos 名字由来 Naming&#xff1a;名字 Configurations&#xff1a;配置 Service&#xff1a;服务 功能…

【基础篇】Git 基础命令与核心概念

✅作者简介&#xff1a;大家好&#xff0c;我是小杨 &#x1f4c3;个人主页&#xff1a;「小杨」的csdn博客 &#x1f433;希望大家多多支持&#x1f970;一起进步呀&#xff01; 一&#xff0c;Git 初识 1.1&#xff0c;问题引入 不知道你工作或学习时&#xff0c;有没有遇到…

Centos8操作系统安装mysql5.7版本以及报错解决

目录 一、卸载MySql 1.首先查看已安装的mysql 2.逐个或者执行一下命令统一卸载掉 注意&#xff1a; 3. 卸载其他相关文件 二、安装MySql 1.安装mysql的rpm源 2.安装MySql 如果遇到以下错误&#xff1a; 问题一: 解决方法&#xff1a; 问题二、 解决方法&#xff1…

国产麒麟v10系统下打包electron+vue程序,报错unknown output format set

报错如下&#xff1a; 报错第一时间想到可能是代码配置原因报错&#xff0c;查看代码似乎感觉没啥问题 又查看具体报错原因可能是因为icon的原因报错&#xff0c;后面查阅发现ico在各系统平台会不兼容&#xff0c;也就是ico是给win下使用的&#xff0c;此处改下图标格式就ok&am…

1、Qt简介

文章目录 前言一、pySide2 / pySide6 ,PyQt5 / PyQt6二、安装包1 安装pyside22 安装pyqt5三、从一个简单的例子开始三、界面动作处理---信号(signal)与槽(slot)(Qt最核心的机制)--- 绑定事件封装到类中总结前言 参考文章:Qt简介 本文开始就开始进入到qt的开发笔记书写…

【论文解读】QUEST: Query Stream for Practical Cooperative Perception

QUEST 摘要引言QUERY COOPERATION PARADIGMQUEST FRAMEWORKA. Overall ArchitectureB. Cross-agent Query Interaction 实验结论 摘要 合作感知通过提供额外的视点和扩展感知领域&#xff0c;可以有效地提高个体感知性能。现有的合作模式要么是可解释的(结果合作)&#xff0c;…

计算机视觉——OpenCV 使用分水岭算法进行图像分割

分水岭算法 分水岭算法&#xff1a;模拟地理形态的图像分割 分水岭算法通过模拟自然地形来实现图像中物体的分类。在这一过程中&#xff0c;每个像素的灰度值被视作其高度&#xff0c;灰度值较高的像素形成山脊&#xff0c;即分水岭&#xff0c;而二值化阈值则相当于水平面&am…

LabVIEW高效目标跟踪系统

LabVIEW高效目标跟踪系统 随着机器视觉技术的飞速发展&#xff0c;设计和实现高效的目标跟踪系统成为了众多领域关注的焦点。基于LabVIEW平台&#xff0c;结合NI Vision机器视觉库&#xff0c;开发了一种既高效又灵活的目标跟踪系统。通过面向对象编程方法和队列消息处理器程序…

以更多架构核心专利,推进 SDS 产业创新创造

今天是第 24 个世界知识产权日&#xff0c;今年世界知识产权日活动的主题是&#xff1a;“知识产权和可持续发展目标&#xff1a;立足创新创造&#xff0c;构建共同未来。” 这也正是 XSKY 在软件定义存储领域的目标之一。以“数据常青”为使命的 XSKY&#xff0c;始终立足于软…

济宁市中考报名照片要求及手机拍照采集证件照方法

随着中考报名季的到来&#xff0c;并且进入了中考报名演练阶段&#xff0c;济宁市的广大考生和家长都开始忙碌起来。报名过程中&#xff0c;上传一张符合要求的证件照是必不可少的环节。本文将详细介绍济宁市中考报名照片的具体要求&#xff0c;并提供一些实用的手机拍照采集证…

LeetCode in Python 74/240. Search a 2D Matrix I/II (搜索二维矩阵I/II)

搜索二维矩阵I其实可以转换为搜索一维数组&#xff0c;原因在于&#xff0c;只要先确定搜索的整数应该在哪一行&#xff0c;即可对该行进行二分查找。 搜索二维矩阵II中矩阵元素排列方式与I不同&#xff0c;但思想大致相同。 目录 LeetCode in Python 74. LeetCode in Pyth…

html表格导出为word文档,导出的部分表格内无法填写文字

导出技术实现&#xff1a;fileSaver.jshtml-docx-js 1.npm安装 npm install --save html-docx-js npm install --save file-saver 2.页面引入 import htmlDocx from html-docx-js/dist/html-docx; import saveAs from file-saver;components: {htmlDocx,saverFile, }, 3.页…

(MSFT.O)微软2024财年Q3营收619亿美元

在科技的浩渺宇宙中&#xff0c;一颗璀璨星辰再度闪耀其光芒——(MSFT.O)微软公司于2024财政年度第三季展现出惊人的财务表现&#xff0c;实现总营业收入达到令人咋舌的6190亿美元。这一辉煌成就不仅突显了微软作为全球技术领导者之一的地位&#xff0c;更引发了业界内外对这家…