数据可视化———Tableau

基本认识:

维度:定性—字符串文本,日期和日期时间等等
度量:定量—连续值,一般属于数值

数据类型:
数值
日期/日期时间
字符串
布尔值
地理值

运算符
算数运算符:加减乘除,%取余,^乘方
逻辑运算符:AND OR NOT
比较运算符:==,>,>=,<,<=,!=
优先级:
1,- 求反
2,^ 乘方
3,*,/,%
4,+,-
5,==,>,>=,<,<=,!=
6,与或非

常用函数:
数字函数:
ABS绝对值
CEILING:向上取整
FLOOR:向下取整
ROUND:四舍五入
POWER
DIV:两数相除取整数
SIGN:符号函数,当数字为负时返回为-1,数字为0返回0,数字为正数返回为1
字符串函数:
CONTAINS(string,substring):如果string字符串包含substring,就返回True
FIND(string,substring,[start]): 返回substring在string中的索引位置,如果没有就返回0,如果设置start起始位置,就从start位置开始找
FINDTH(string,substring,occurance): string字符串可能包含多个substring字符串,返回指定的第occurance个字符串的位置
REPLACE(string,substring,replacement):在string字符串中,将substring替换成replacement,如果没有则保持不变
SPLIT(string, delimiter, tokennumber): 在string字符串中,以delimiter分隔符来拆分,并返回拆分后第tokennumber个字符串
LEN(“string”):string的长度
STARTWITH(“Chinese”,“nese”): nese是否包含在Chinese的开始位置
ENDWITH(“Chinese”,‘nese’): nese是否包含在Chinese的结束位置
UPPER(“tableau”):统一将tableau转换成大写TABLEAU
LOWER(): 转换成小写
LTRIM(" tableau"):删除左边空格
RTRIM("tableau “):删除右边空格
TRIM(” tableau "): 删除左边和右边的空格

日期函数:
DATEADD(datepart时间频率,increment时间数量,date日期字段):返回increment和date按照date_part格式相加或减的值
date+ increment*datepart
DATEDIFF(datepart,date1,date2): 返回date1和date2 按照date_part格式的时间差值
DATENAME(‘‘month’’, #2016-06-09#) 返回月份June
DATEPART(“day”,#2016-07-09#, “monday”)=9 返回day,与DATENAME类似
MAKEDATETIME(#2016-02-03#,#07:34:20#) =2016-02-03 07:34:20;
YEAR(date)
MONTH(date)
TODAY() 返回当前系统时间
NOW()

类型转换函数
STR()
INT()
FLOAT()
DATE(“2014-09-10 14:30”)= 2014-09-10
DATEPARSE(“dd.MMMM.yyyy”,“15.April.2004”) = 2004-04-15 12:00:00 AM 换成指定格式

逻辑函数
ISDATE()
ISNULL()
IIF()
IF test THEN value END
CASE 字段 WHEN “a” THEN 1 WHEN “b” THEN 2 ELSE 3 END

聚合函数
COUNT
COUNTD: 去重复值之后的计数
SUM
AVG
MAX
MIN
MEDIAN

结构:向下钻取 粗的维度向细的维度钻取
向上钻取 细的维度向粗的维度钻取

创建组:针对文本型的字段
创建级或数据桶:针对数据型的字段
双击订单进入逻辑表
双击订单进入逻辑表。在逻辑表中叫做创建级,在工作表中叫做数据桶

创建字段:
创建度量:计算利润率,利润率不能求总和,不可以使用字段来计算,需要对利润求和除销售额的总量,我觉得,度量和字段的关系就是,度量需要对字段进行聚合运算,字段只需要对原始数据进行加工计算即可

表计算:做透视统计分析,表计算就是透视后的二次计算
分区字段:将整个表拆分成多个子表,并对每个子表单独执行计算(如果行或者列标签存在多级标签,则父标签就是分区字段)
寻址字段:确定具体的计算方向(从左->右,从上到下)
计算类型:
差异:比较值-基准值 比较值为当前单元格的值,基准值为上一个单元格的值
百分比差异:差异/基准值
百分位:生成百分比的排名序号
移动计算:计算指定范围的数值,比如总计上一个2,下一个2,计算规则:当前单元格的值+前面两个的值+后面两个的值
计算依据:
表 横穿:整张表的每行数据从左到右计算
表 向下:整张表的每列数据从上到下计算
表 横穿,然后向下,z字型计算,第一行从左到右计算完,再从第二行开始从左到右计算
表 向下,然后横穿,N字型计算,第一列从上到下计算完,再从第二列从上到下计算
单元格,每个单元格的数据独立计算
特定维度:按照固定字段的方向计算
LOD公式,Levels of Detail详细级别表达式:
EXCLUDE 维度削弱
FIXED 指定维度
INCLUDE 维度增强

数据可视化

将维度,度量,图表三者结合,实现急速高校地数据分析及可视化
页面: 播放器,播放图标,向前/向后播放,可以选择播放速度
筛选器:做数据筛选的功能

标记:
颜色:针对连续型字段,根据数值大小做一个相应的颜色变化
针对文本型字段,根据颜色来区分不同的文本类型,可以充当图例的作用
大小:根据数值的大小,来决定图形大小
标签:设置图形显示数据标签
详细信息:绘图的最小单位,颗粒度或者分组依据,如绘制散点图或者箱线图,将订单ID字段拖放至详细信息,那么每个订单生成一个坐标点,如果绘制业务地图,将省份字段拖放至详细信息,那么每个省份生成一个地域
工具提示:鼠标悬浮在图形上的提示信息
路径:线条样式(折线图)
角度:根据数值的大小,来决定角度大小,一般针对饼图

散点图:观测两个度量之间的相关性,也就是是否存在线性关系
动态图:页面的时间频率和列的时间频率要相同
盒须图/箱线图:观测一组数据的离散程度和集中趋势
瀑布图:选择甘特条形图

  • 如何在表中添加总计这一列和行: 点击分析(左上角)-> 双击总计
  • 如何将上下两张表 公用一个y轴,右键需要被合并的维度行名称,点击双轴

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/568955.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Flask】Flask中HTTP请求与接收

一、接收http请求与返回响应 在Flask中&#xff0c;可以通过app.route装饰器来定义路由函数。 app.route(/BringGoods,methods [POST, GET]) GET请求&#xff1a;使用request.args.get(key)或者request.values.get(key)来获取URL中的参数。 POST请求&#xff1a; 使用req…

Python自学之路--001:Python + PyCharm安装图文详解教程

目录 1、概述 2、Python解释器 2.1、下载 2.2、Python安装 2.3、Python环境变量配置&#xff0c;必选项 3、PyCharm安装 3.1、PyCharm下载 3.2、PyCharm安装 4、建一个Hello World 5、Phcarm设置 5.1、Phcarm汉化 5.2、Phcarm工具栏显示在顶部 5.3、Phcarm通过pip安…

【QT学习】9.绘图,三种贴图,贴图的转换,不规则贴图(透明泡泡)

一。绘图的解释 Qt 中提供了强大的 2D 绘图系统&#xff0c;可以使用相同的 API 在屏幕和绘图设备上进行绘制&#xff0c;它主要基于QPainter、QPaintDevice 和 QPaintEngine 这三个类。 QPainter 用于执行绘图操作&#xff0c;其提供的 API 在 GUI 或 QImage、QOpenGLPaintDev…

linux18:进程等待

进程等待的必要性 1&#xff1a;子进程创建的目的是要完成父进程指派的某个任务&#xff0c;当子进程运行完毕退出时&#xff0c;父进程需要通过进程等待的方式&#xff0c;回收子进程资源&#xff0c;获取子进程退出信息&#xff08;子进程有无异常&#xff1f;没有异常结果是…

研究发现:提示中加入数百个示例显著提升大型语言模型的性能

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

人工智能时代的关键技术:深入探索向量数据库及其在AI中的应用

文章目录 1. 理解向量数据库&#xff1a;二维模型示例2. 向量数据库中的数据存储与检索3. 向量数据库如何工作&#xff1f;4. 向量数据库如何知道哪些向量相似&#xff1f; 在人工智能技术日益成熟的当下&#xff0c;向量数据库作为处理和检索高维数据的关键工具&#xff0c;对…

LlamaIndex 加 Ollama 实现 Agent

AI Agent 是 AIGC 落地实现的场景之一&#xff0c;与 RAG 不同&#xff0c;RAG 是对数据的扩充&#xff0c;是模型可以学习到新数据或者本地私有数据。AI Agent 是自己推理&#xff0c;自己做&#xff0c;例如你对 AI Agent 说我要知道今天上海的天气怎么样&#xff0c;由于 AI…

WSL2无法ping通本地主机ip的解决办法

刚装完WSL2的Ubuntu子系统时&#xff0c;可能无法ping通本地主机的ip&#xff1a; WSL2系统ip&#xff1a; 本地主机ip&#xff1a; 在powershell里输入如下的命令&#xff1a; New-NetFirewallRule -DisplayName "WSL" -Direction Inbound -InterfaceAlias &quo…

AI大模型探索之路-认知篇4:大语言模型预训练基础认知

文章目录 前言一、预训练流程分析二、预训练两大挑战三、预训练网络通信四、预训练数据并行五、预训练模型并行六、预训练3D并行七、预训练代码示例总结 前言 在人工智能的宏伟蓝图中&#xff0c;大语言模型&#xff08;LLM&#xff09;的预训练是构筑智慧之塔的基石。预训练过…

【简单讲解下如何学习C++】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…

微信小程序开发工具的使用,各个配置文件详解,小程序开发快速入门

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

网页信息提取能力哪家强?GPT4、Claude、perplexity、kimi、通义千问大比拼

barnesandnoble网上书店有一个页面&#xff1a;https://www.barnesandnoble.com/b/books/step-into-reading-early-readers-kids-fiction/step-into-reading-book-series-a-step-3-book-childrens-fiction/_/N-29Z8q8Z2i94?Nrpp40&page1 &#xff0c; 现在想把网页上的书名…

【Linux高性能服务器编程】两种高性能并发模式剖析——半同步/半异步模式

hello &#xff01;大家好呀&#xff01; 欢迎大家来到我的Linux高性能服务器编程系列之两种高性能并发模式介绍&#xff0c;在这篇文章中&#xff0c;你将会学习到高效的创建自己的高性能服务器&#xff0c;并且我会给出源码进行剖析&#xff0c;以及手绘UML图来帮助大家来理解…

分布式与一致性协议之拜占庭将军问题(三)

拜占庭将军问题 叛将先发送消息 如果是叛将楚先发送作战消息&#xff0c;干扰作战计划&#xff0c;结果会有所不同吗&#xff1f; 在第一轮作战信息协商中&#xff0c;楚向苏秦发送作战指令"进攻",向齐、燕发送作战指令"撤退"&#xff0c;如图所示(当然还…

【勒索病毒恢复】.svh勒索病毒介绍及恢复方案

一、.[[backupwaifu.club]].svh勒索病毒介绍 svh勒索病毒是一种恶意软件&#xff0c;它通过加密受害者的文件并要求支付赎金来解锁&#xff0c;从而达到勒索的目的。这种病毒已经存在了数年&#xff0c;并且不断演变&#xff0c;形成了多种不同的家族和变种。如果您的数据承载着…

接口测试-笔记

Date 2024年4月23日21:19:51 Author KarrySmile 1. 前言 因为想更加规范地开发接口&#xff0c;同时让自己测试接口的时候更加高效&#xff0c;更好地写好接口文档。所以学习黑马的《接口自动化测试》课程。链接&#xff1a;黑马程序员软件测试接口自动化测试全套视频教程&a…

Maven基础篇6

Idea环境中资源上传与下载 具体问题本地仓库如何与私服打交道&#xff1b; 本地仓库向私服上传文件&#xff0c;上传的文件位置在哪里&#xff1f; 访问私服配置相关信息&#xff1a;用户名密码&#xff1b; 下载东西&#xff0c;需要的各种信息&#xff0c;需要的仓库组的…

TDengine高可用探讨

提到数据库&#xff0c;不可避免的要考虑高可用HA&#xff08;High Availability&#xff09;。但是很多人对高可用的理解并不是很透彻。 要搞清高可用需要回答以下几个问题&#xff1a; 什么是高可用&#xff1f;为什么需要高可用&#xff1f;高可用需要达到什么样的目标&am…

【面试经典 150 | 数组】反转字符串中的单词

文章目录 写在前面Tag题目来源解题思路方法一&#xff1a;模拟实现方法二&#xff1a;使用库函数 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法&#xff0c;两到三天更新一篇文章&#xff0c;欢迎催更…… 专栏内容以分析题目为主&#xff0c;并附带一些对于本…

公园景区伴随音乐系统-公园景区数字IP广播伴随音乐系统建设指南

公园景区伴随音乐系统-公园景区数字IP广播伴随音乐系统建设指南 由北京海特伟业任洪卓发布于2024年4月23日 随着“互联网”被提升为国家战略&#xff0c;传统行业与互联网的深度融合正在如火如荼地展开。在这一大背景下&#xff0c;海特伟业紧跟时代步伐&#xff0c;凭借其深厚…