LLaMA系列 | LLaMA和LLaMA-2精简总结

在这里插入图片描述

文章目录

  • 1、LLaMA
    • 1.1、模型结构
    • 1.2、训练方式
    • 1.3、结论
  • 2、LLaMA-2
    • 2.1、相比LLaMA1的升级
    • 2.3、模型结构
      • 2.3.1、MHA, MQA, GQA区别与联系
    • 2.4、训练方式

1、LLaMA

🔥 纯基座语言模型
《LLaMA: Open and Efficient Foundation Language Models》:https://arxiv.org/pdf/2302.13971.pdf

  • 开源!
  • Meta AI 发布,包含 7B、13B、33B 和 65B 四种参数规模的模型。其中llama-13B(gpt-3 1/10大小)在多数benchmarks上超越gpt-3(175B)。
  • 训练数据集使用的都是开源的数据集。

1.1、模型结构

transformer decoder结构
llama在transformer decoder结构上做了3大改进:

  • 【gpt-3采用的】layer-norm -> RMSNorm (Root Mean square Layer Normalization)。transformer的block里是这样的前向流程multi-head-att -> add&norm -> feed-forward -> add&norm。而llama将norm改成里RMSNorm,并将其移到里input层,而不是output层。
  • 【PaLM采用的】采用SwiGLU激活函数
  • 【GPTNeo采用的】采用RoPE位置编码,即苏神提出的RoPE,现在基本是大模型必备的位置编码方式。(具体介绍可看我的另一篇博客:Rotary Position Embedding (RoPE, 旋转式位置编码) | 原理讲解+torch代码实现)

1.2、训练方式

  • 语言模型预训练
  • 优化器:AdamW。
  • 使用cosine learning rate schedule,使得最终学习率等于最大学习率的10%,设置0.1的权重衰减和1.0的梯度裁剪。warmup的step为2000,并根据模型的大小改变学习率和批处理大小。嗯大概是模型变大,学习率变小了一丢丢。
    在这里插入图片描述
  • 另外地,为提高训练效率,还做了些优化操作,如gradient checkpoint等。

1.3、结论

  • 从实验来看,模型越大越好,小模型确实达不到大模型大力出奇迹的效果,而模型结构也并没有那么重要(虽然有很多工作是在改进模型结构本身)。结论部分更强调了大模型比大数据更重要,但都重要,因为增大数据或是增大模型,都能看到性能不断提高。

2、LLaMA-2

《Llama 2: Open Foundation and Fine-Tuned Chat Models》:https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/

  • 开源!
  • 包含3种参数版本:7B、13B 和 34B,70B。
  • LLaMA-2-CHAT 与 OpenAI ChatGPT 效果一样好。

2.1、相比LLaMA1的升级

  • LLama2训练语料相比LLaMA多出40%,上下文长度是由之前的2048升级到4096,可以理解和生成更长的文本。
  • 新增预预训练数据,并注重安全&隐私问题。
  • 训练出了chat版本:llama-2-chat:SFT, RLHF。

在这里插入图片描述

2.3、模型结构

  • 模型结构基本和llama一样,transformer decoder结构,RMSNorm 应用预归一化、使用 SwiGLU 激活函数和旋转位置嵌入RoPE。

  • 上下文长度是由之前的2048升级到4096,可以理解和生成更长的文本。
    7B和13B 使用与 LLaMA 相同的架构,34B和70B模型采用分组查询注意力(GQA)。【下面我展开来讲解】

  • For speed up decoding! 自回归解码的标准做法(past key-value 机制)是缓存序列中先前标记的k,v矩阵,从而加快注意力计算速度。但上下文长度、批量大小、模型大小较大时,多头注意力(MHA)中的kv缓存无疑巨大。

  • 所以采用分组查询注意力机制(GQA)可以提高大模型的推理可扩展性。它的工作原理是将键和值投影在多个头之间共享,而不会大幅降低性能。可以使用具有单个KV投影的原始多查询格式(MQA)或具有8KV投影的分组查询注意力变体(GQA)。

2.3.1、MHA, MQA, GQA区别与联系

LLama2的注意力机制使用了GQA,那么什么是GQA呢?和标准的MHA有什么区别呢?
在这里插入图片描述

  • MHA(Multi-head Attention)是标准的多头注意力机制,h个Query、Key 和 Value 矩阵。

  • MQA(Multi-Query Attention,Fast Transformer Decoding: One Write-Head is All You Need)是多查询注意力的一种变体,也是用于自回归解码的一种注意力机制。与MHA不同的是,MQA 让所有的头之间共享同一份 Key 和 Value 矩阵,每个头只单独保留了一份 Query 参数,从而大大减少 Key 和 Value 矩阵的参数量。【论文:https://arxiv.org/pdf/1911.02150.pdf】

  • GQA(Grouped-Query Attention,GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints)是分组查询注意力,GQA将查询头分成G组,每个组共享一个Key 和 Value 矩阵。GQA-G是指具有G组的grouped-query attention。GQA-1具有单个组,因此具有单个Key 和 Value,等效于MQA。而GQA-H具有与头数相等的组,等效于MHA。【论文:https://arxiv.org/pdf/2305.13245v1.pdf】

2.4、训练方式

【优化器:AdamW;学习率计划:cosine learning rate schedule。使用 0.1 的权重衰减和1.0的梯度裁剪。】

  • 0、Llama2使用与Llama1相同的分词器;它采用BPE算法,使用 SentencePiece 实现。与Llama 1 一样,将所有数字拆分为单独的数字,并使用字节来分解未知的 UTF-8 字符。词汇量为 32k token
  • 1、使用公开的在线数据进行预训练。
  • 2、SFT:然后通过使用有监督微调创建 Llama-2-chat 的初始版本。
  • 3、RLHF:接下来,llama-2-chat 使用人类反馈强化学习 (RLHF) 进行迭代细化,其中包括拒绝采样和近端策略优化 (PPO)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/56787.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

大麦链接源码 大麦一键生成订单截图

8.4最新版源码 更新了大麦链接模版 更新了大麦订单截图一键生成 下载源码:https://pan.baidu.com/s/16lN3gvRIZm7pqhvVMYYecQ?pwd6zw3

Android 自定义按钮(可滑动、点击)

按钮图片素材 https://download.csdn.net/download/Lan_Se_Tian_Ma/88151085 px 和 dp 转换工具类(Java) // px 和 dp 转换工具类 public class DensityUtil {/*** 根据手机的分辨率从 dip 的单位 转成为 px(像素)*/public static int dip2px(Conte…

Excel技巧 - 管理规则设置一行变色

如何设置某一列单元格的值大于一个值时,该单元格所在的一整行都变色呢? 1、先框选内容区域,点击开始,条件格式,新建规则 2、如果销量大于20,则该行都变为绿色 编辑格式选择:使用公式确定要设置…

springboot第33集:nacos图

./startup.sh -m standalone Nacos是一个内部微服务组件,需要在可信的内部网络中运行,不可暴露在公网环境,防止带来安全风险。Nacos提供简单的鉴权实现,为防止业务错用的弱鉴权体系,不是防止恶意攻击的强鉴权体系。 鉴…

ChatGPT及其工作原理;OpenAI申请注册商标GPT-5,引发关注

🦉 AI新闻 🚀 OpenAI申请注册商标GPT-5,引发关注 摘要:OpenAI已在上月18日申请注册商标GPT-5,显示该模型将提供文本生成、自然语言理解、语音转录、翻译、分析等功能。此前OpenAI曾表示尚未开始训练GPT-4的后继者GPT…

在 React 中渲染大型数据集的 3 种方法

随着 Web 应用程序变得越来越复杂,我们需要找到有效的方法来优化性能和渲染大型数据集。在 React 应用程序中处理大型数据集时,一次呈现所有数据可能会导致性能不佳和加载时间变慢。 虚拟化是一种通过一次仅呈现数据集的一部分来解决此问题的技术&#…

I.MX6ULL_Linux_驱动篇(41)platform设备驱动框架

我们在前面几章编写的设备驱动都非常的简单,都是对IO进行最简单的读写操作。像I2C、SPI、 LCD 等这些复杂外设的驱动就不能这么去写了, Linux 系统要考虑到驱动的可重用性,因此提出了驱动的分离与分层这样的软件思路,在这个思路下…

原型链污染,nodejs逃逸例子

文章目录 原型链污染原型链污染原理原型链污染小例子 原型链污染题目解析第一题第二题 Nodejs沙箱逃逸方法一方法二 原型链污染 原型链污染原理 原型链 function test(){this.a test; } b new test;可以看到b在实例化为test对象以后,就可以输出test类中的属性a…

用python做一个小项目,python做简单小项目

大家好,本文将围绕用python做一个小项目展开说明,python做简单小项目是一个很多人都想弄明白的事情,想搞清楚python入门小项目需要先了解以下几个事情。 来源丨网络 经常听到有朋友说,学习编程是一件非常枯燥无味的事情。其实&…

gitlab配置webhook

一.前言 当需要做jenkins的自动化触发构建时,就需要配置gitlab的webhook功能,以下来展示以下如何配置gitlab的webhook,jenkins的配置就不在这里展示了,可以去看我devops文章的完整配置 二.配置 在新版本的gitlab中&#xff0c…

JavaScript 手撕大厂面试题数组扁平化以及增加版本 plus

前言 现在的前端面试手撕题是一个必要环节,有点时候八股回答的不错但是手撕题没写出来就会让面试官印象分大减,很可能就挂了… 概念 数组的扁平化其实就是将一个多层嵌套的数组转换为只有一层的数组 比如: [1, [2, [3, [4, 5]]]] > [1…

高速公路巡检无人机,为何成为公路巡检的主流工具

随着无人机技术的不断发展,无人机越来越多地应用于各个领域。其中,在高速公路领域,高速公路巡检无人机已成为公路巡检的得力助手。高速公路巡检无人机之所以能够成为公路巡检中的主流工具,主要是因为其具备以下三大特性。 一、高速…

Android 之 MediaPlayer 播放音频与视频

本节引言: 本节带来的是Android多媒体中的——MediaPlayer,我们可以通过这个API来播放音频和视频 该类是Androd多媒体框架中的一个重要组件,通过该类,我们可以以最小的步骤来获取,解码 和播放音视频。它支持三种不同的…

PHP8的运算符-PHP8知识详解

运算符是可以通过给出的一或多个值(用编程行话来说,表达式)来产生另一个值(因而整个结构成为一个表达式)的东西。 PHP8的运算符有很多,按类型分有一元运算符、二元运算符、三元运算符。 一元运算符只对一…

第四讲:利用ADO方式连接Access数据库

【分享成果,随喜正能量】最值得信赖的,其实是自己从孤独中得来的东西,而不是别人给予自己的东西。每个人都是一座孤岛,有些人一生都在想要逃离这座岛,有些人一生都在创造并丰富自己这座岛。。 《VBA数据库解决方案》教…

解释器模式——自定义语言的实现

1、简介 1.1、文法规则和抽象语法树 解释器模式描述了如何为简单的语言定义一个文法,如何在该语言中表示一个句子,以及如何解释这些句子。在正式分析解释器模式结构之前,先来学习如何表示一个语言的文法规则以及如何构造一棵抽象语法树。 …

安全文件传输:如何避免数据泄露和黑客攻击

网络安全问题日益严重,导致许多数据被泄露和黑客袭击的事件频发。为了保证文件传输的安全,需要实施一系列安全文件传输策略来防止数据被泄露和黑客袭击。 第一、选择适合的加密方法是非常关键的 加密是一种将明文转换成密文的过程,这样只有授…

跨部门协作,企业图文档管理的协同管理的重要性

随着企业规模的扩大和业务流程的复杂化,图文档管理涉及的部门和人员越来越多,因此跨部门协作成为了必不可少的管理方式。在线图文档管理作为现代企业的数字化解决方案之一,为跨部门协作提供了强大的支持和便利。在线图文档管理在企业图文档管…

计算机视觉实验:图像增强应用实践

本次实验主要从基于统计、函数映射的图像增强方法和基于滤波的图像增强方法两种方法中对一些图像增强的算法进行实现。主要的编程语言为python,调用了python自带的PIL图像库用于读取图像,利用numpy进行图像运算,最后使用opencv第三方库进行对…