YOLOv5改进 | Conv篇 | 利用CVPR2024-DynamicConv提出的GhostModule改进C3(全网独家首发)

一、本文介绍

本文给大家带来的改进机制是CVPR2024的最新改进机制DynamicConv其是CVPR2024的最新改进机制,这个论文中介绍了一个名为ParameterNet的新型设计原则,它旨在在大规模视觉预训练模型中增加参数数量,同时尽量不增加浮点运算(FLOPs),所以本文的DynamicConv被提出来了,使得网络在保持低FLOPs的同时增加参数量,在其提出的时候它也提出了一个新的模块hostModule,我勇其魔改C2f从而达到创新的目的,在V5n上其参数量仅有130W计算量为2.9GFLOPs,从而允许这些网络从大规模视觉预训练中获益。

  欢迎大家订阅我的专栏一起学习YOLO! 

 专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

目录

一、本文介绍

二、原理介绍

三、核心代码 

 四、手把手教你添加GhostModule模块

4.1 GhostModule添加步骤

4.1.1 修改一

4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

4.2 GhostModule的yaml文件和训练截图

4.3GhostModule的训练过程截图 

五、本文总结


二、原理介绍

官方论文地址: 官方论文地址点击此处即可跳转

官方代码地址: 官方代码地址点击此处即可跳转 


动态卷积(Dynamic Convolution)是《DynamicConv.pdf》中提出的一种关键技术,旨在增加网络的参数量而几乎不增加额外的浮点运算(FLOPs)。以下是关于动态卷积的主要信息和原理:

主要原理:

1. 动态卷积的定义:
   动态卷积通过对每个输入样本动态选择或组合不同的卷积核(称为"experts"),来处理输入数据。这种方法可以视为是对传统卷积操作的扩展,它允许网络根据输入的不同自适应地调整其参数。

2. 参数和计算的动态化:
   在动态卷积中,不是为所有输入使用固定的卷积核,而是有多个卷积核(或参数集),并且根据输入的特性动态选择使用哪个核。
   这种选择通过一个学习得到的函数(例如,使用多层感知机(MLP)和softmax函数)来动态生成控制各个卷积核贡献的权重。

3. 计算过程:
   给定输入特征X​,和一组卷积核W_1, W_2, ..., W_M​,每个核对应一个专家。
   每个专家的贡献由一个动态系数 \alpha_i\alpha_i​控制,这些系数是针对每个输入样本动态生成的。
   输出Y​是所有动态选定的卷积核操作的加权和:Y = \sum_{i=1}^M \alpha_i (X * W_i)
   其中*​表示卷积操作,\alpha_i​是通过一个小型网络(如MLP)动态计算得出的,这个小网络的输入是全局平均池化后的特征。

动态卷积的优点:

  • 参数效率高:通过共享和动态组合卷积核,动态卷积可以在增加极少的计算成本的情况下显著增加模型的参数量。
  • 适应性强:由于卷积核是针对每个输入动态选择的,这种方法可以更好地适应不同的输入特征,理论上可以提高模型的泛化能力。
  • 资源使用优化:动态卷积允许模型在资源有限的环境中(如移动设备)部署更复杂的网络结构,而不会显著增加计算负担。

动态卷积的设计思想突破了传统卷积网络结构的限制,通过动态调整和优化计算资源的使用,实现了在低FLOPs条件下提升网络性能的目标,这对于需要在计算资源受限的设备上运行高效AI模型的应用场景尤为重要。


三、核心代码 

核心代码的使用方式看章节四!

"""
An implementation of GhostNet Model as defined in:
GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907
The train script of the model is similar to that of MobileNetV3
Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch
"""
import math
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.layers import drop_path, SqueezeExcite
from timm.models.layers import CondConv2d, hard_sigmoid, DropPath

__all__ = ['C3_GhostModule']

_SE_LAYER = partial(SqueezeExcite, gate_fn=hard_sigmoid, divisor=4)


class DynamicConv(nn.Module):
    """ Dynamic Conv layer
    """

    def __init__(self, in_features, out_features, kernel_size=1, stride=1, padding='', dilation=1,
                 groups=1, bias=False, num_experts=4):
        super().__init__()
        self.routing = nn.Linear(in_features, num_experts)
        self.cond_conv = CondConv2d(in_features, out_features, kernel_size, stride, padding, dilation,
                                    groups, bias, num_experts)

    def forward(self, x):
        pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1)  # CondConv routing
        routing_weights = torch.sigmoid(self.routing(pooled_inputs))
        x = self.cond_conv(x, routing_weights)
        return x


class ConvBnAct(nn.Module):
    """ Conv + Norm Layer + Activation w/ optional skip connection
    """

    def __init__(
            self, in_chs, out_chs, kernel_size, stride=1, dilation=1, pad_type='',
            skip=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, drop_path_rate=0., num_experts=4):
        super(ConvBnAct, self).__init__()
        self.has_residual = skip and stride == 1 and in_chs == out_chs
        self.drop_path_rate = drop_path_rate
        # self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, padding=pad_type)
        self.conv = DynamicConv(in_chs, out_chs, kernel_size, stride, dilation=dilation, padding=pad_type,
                                num_experts=num_experts)
        self.bn1 = norm_layer(out_chs)
        self.act1 = act_layer()

    def feature_info(self, location):
        if location == 'expansion':  # output of conv after act, same as block coutput
            info = dict(module='act1', hook_type='forward', num_chs=self.conv.out_channels)
        else:  # location == 'bottleneck', block output
            info = dict(module='', hook_type='', num_chs=self.conv.out_channels)
        return info

    def forward(self, x):
        shortcut = x
        x = self.conv(x)
        x = self.bn1(x)
        x = self.act1(x)
        if self.has_residual:
            if self.drop_path_rate > 0.:
                x = drop_path(x, self.drop_path_rate, self.training)
            x += shortcut
        return x


class GhostModule(nn.Module):
    def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, act_layer=nn.ReLU, num_experts=4):
        super(GhostModule, self).__init__()
        self.oup = oup
        init_channels = math.ceil(oup / ratio)
        new_channels = init_channels * (ratio - 1)

        self.primary_conv = nn.Sequential(
            DynamicConv(inp, init_channels, kernel_size, stride, kernel_size // 2, bias=False, num_experts=num_experts),
            nn.BatchNorm2d(init_channels),
            act_layer() if act_layer is not None else nn.Sequential(),
        )

        self.cheap_operation = nn.Sequential(
            DynamicConv(init_channels, new_channels, dw_size, 1, dw_size // 2, groups=init_channels, bias=False,
                        num_experts=num_experts),
            nn.BatchNorm2d(new_channels),
            act_layer() if act_layer is not None else nn.Sequential(),
        )

    def forward(self, x):
        x1 = self.primary_conv(x)
        x2 = self.cheap_operation(x1)
        out = torch.cat([x1, x2], dim=1)
        return out[:, :self.oup, :, :]


class GhostBottleneck(nn.Module):
    """ Ghost bottleneck w/ optional SE"""

    def __init__(self, in_chs, out_chs, dw_kernel_size=3,
                 stride=1, act_layer=nn.ReLU, se_ratio=0., drop_path=0., num_experts=4):
        super(GhostBottleneck, self).__init__()
        has_se = se_ratio is not None and se_ratio > 0.
        self.stride = stride
        mid_chs = in_chs * 2
        # Point-wise expansion
        self.ghost1 = GhostModule(in_chs, mid_chs, act_layer=act_layer, num_experts=num_experts)

        # Depth-wise convolution
        if self.stride > 1:
            self.conv_dw = nn.Conv2d(
                mid_chs, mid_chs, dw_kernel_size, stride=stride,
                padding=(dw_kernel_size - 1) // 2, groups=mid_chs, bias=False)
            self.bn_dw = nn.BatchNorm2d(mid_chs)
        else:
            self.conv_dw = None
            self.bn_dw = None

        # Squeeze-and-excitation
        self.se = _SE_LAYER(mid_chs, se_ratio=se_ratio,
                            act_layer=act_layer if act_layer is not nn.GELU else nn.ReLU) if has_se else None

        # Point-wise linear projection
        self.ghost2 = GhostModule(mid_chs, out_chs, act_layer=None, num_experts=num_experts)

        # shortcut
        if in_chs == out_chs and self.stride == 1:
            self.shortcut = nn.Sequential()
        else:
            self.shortcut = nn.Sequential(
                DynamicConv(
                    in_chs, in_chs, dw_kernel_size, stride=stride,
                    padding=(dw_kernel_size - 1) // 2, groups=in_chs, bias=False, num_experts=num_experts),
                nn.BatchNorm2d(in_chs),
                DynamicConv(in_chs, out_chs, 1, stride=1, padding=0, bias=False, num_experts=num_experts),
                nn.BatchNorm2d(out_chs),
            )

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        shortcut = x

        # 1st ghost bottleneck
        x = self.ghost1(x)

        # Depth-wise convolution
        if self.conv_dw is not None:
            x = self.conv_dw(x)
            x = self.bn_dw(x)

        # Squeeze-and-excitation
        if self.se is not None:
            x = self.se(x)

        # 2nd ghost bottleneck
        x = self.ghost2(x)

        x = self.shortcut(shortcut) + self.drop_path(x)
        return x


def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p



class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))


class C3_GhostModule(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(GhostModule(c_, c_) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))




if __name__ == "__main__":
    # Generating Sample image
    image_size = (1, 64, 224, 224)
    image = torch.rand(*image_size)

    # Model
    model = C3_GhostModule(64, 64)

    out = model(image)
    print(out.size())


 四、手把手教你添加GhostModule模块

4.1 GhostModule添加步骤

4.1.1 修改一

首先我们找到如下的目录'yolov5-master/models',然后在这个目录下在创建一个新的目录然后这个就是存储改进的仓库,大家可以在这里新建所有的改进的py文件,对应改进的文件名字可以根据你自己的习惯起(不影响任何但是下面导入的时候记住改成你对应的即可),然后将GhostModule的核心代码复制进去。


4.1.2 修改二

然后在新建的目录里面我们在新建一个__init__.py文件(此文件大家只需要建立一个即可),然后我们在里面添加导入我们模块的代码。注意标记一个'.'其作用是标记当前目录。

​​


4.1.3 修改三 

然后我们找到如下文件''models/yolo.py''在开头的地方导入我们的模块按照如下修改->

(如果你看了我多个改进机制此处只需要添加一个即可,无需重复添加)

注意的添加位置要放在common的导入上面!!!!!

​​​​​


4.1.4 修改四

然后我们找到parse_model方法,按照如下修改->

到此就修改完成了,复制下面的ymal文件即可运行。


4.2 GhostModule的yaml文件和训练截图

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [
    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
    [-1, 3, C3_GhostModule, [128]],
    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
    [-1, 6, C3_GhostModule, [256]],
    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
    [-1, 9, C3_GhostModule, [512]],
    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
    [-1, 3, C3_GhostModule, [1024]],
    [-1, 1, SPPF, [1024, 5]], # 9
  ]

# YOLOv5 v6.0 head
head: [
    [-1, 1, Conv, [512, 1, 1]],
    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
    [[-1, 6], 1, Concat, [1]], # cat backbone P4
    [-1, 3, C3_GhostModule, [512, False]], # 13

    [-1, 1, Conv, [256, 1, 1]],
    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
    [[-1, 4], 1, Concat, [1]], # cat backbone P3
    [-1, 3, C3_GhostModule, [256, False]], # 17 (P3/8-small)

    [-1, 1, Conv, [256, 3, 2]],
    [[-1, 14], 1, Concat, [1]], # cat head P4
    [-1, 3, C3_GhostModule, [512, False]], # 20 (P4/16-medium)

    [-1, 1, Conv, [512, 3, 2]],
    [[-1, 10], 1, Concat, [1]], # cat head P5
    [-1, 3, C3_GhostModule, [1024, False]], # 23 (P5/32-large)

    [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
  ]


4.3GhostModule的训练过程截图 

​​

​​​​​​


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv5改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/566218.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何使用 ArcGIS Pro 快速为黑白地图配色

对于某些拍摄时间比较久远的地图,限于当时的技术水平只有黑白的地图,针对这种情况,我们可以通过现在的地图为该地图进行配色,这里为大家讲解一下操作方法,希望能对你有所帮助。 数据来源 教程所使用的数据是从水经微…

kafka 命令行使用 消息的写入和读取 quickstart

文章目录 Intro命令日志zookeeper serverkafka servercreate topic && describe topic Intro Kafka在大型系统中可用作消息通道,一般是用程序语言作为客户端去调用kafka服务。 不过在这之前,可以先用下载kafka之后就包含的脚本文件等&#xff0…

ChromaDB教程

使用 Chroma DB,管理文本文档、将文本嵌入以及进行相似度搜索。 随着大型语言模型 (LLM) 及其应用的兴起,我们看到向量数据库越来越受欢迎。这是因为使用 LLM 需要一种与传统机器学习模型不同的方法。 LLM 的核心支持技术之一是…

数据库管理-第173期 OceanBase一体化Plus多模融合(20240422)

数据库管理173期 2024-04-22 数据库管理-第173期 OceanBase一体化Plus多模融合(20240422)1 架构简化2 不止融合2.1 行列混存2.2 多维使用2.3 多模JOIN 3 展望 数据库管理-第173期 OceanBase一体化Plus多模融合(20240422) 作者&…

Skill Check: Building Blocks for an LLM Application

Skill Check: Building Blocks for an LLM Application

腾讯云轻量2核4G5M服务器优惠价格165元1年,2024年多配置报价单

腾讯云轻量2核4G5M服务器优惠价格165元1年。腾讯云服务器价格表2024年最新价格,轻量2核2G3M服务器61元一年、2核2G4M服务器99元1年,三年560元、2核4G5M服务器165元一年、3年900元、轻量4核8M12M服务器646元15个月、4核16G10M配置32元1个月、8核32G配置11…

vue-element-admin vue设置动态路由 刷新页面后出现跳转404页面Bug 解决方法

做项目时遇到的这个bug,因为除了跳404之外也没太大影响,之前就一直放着没管,现在项目基本功能实现了,转头处理了一下,现在在这里记录一下解决方法 这个bug的具体情况是:设置了动态路由之后,不同…

如何在PostgreSQL中使用索引覆盖扫描提高查询性能?

文章目录 解决方案1. 创建合适的索引2. 确保查询能够使用索引覆盖扫描3. 调整查询以利用索引覆盖扫描4. 监控和调优 示例代码1. 创建索引2. 编写查询3. 检查是否使用索引覆盖扫描4. 调整索引 总结 在PostgreSQL中,索引是提高查询性能的关键工具之一。索引允许数据库…

物理机中没有VMNet1和VMNet8虚拟网卡

控制面板——网络连接——网络适配器 VMware Network Adapter VMnet1 VMware Network Adapter VMnet8 如果没有这两个虚拟网卡,虚拟机的网络会出现问题 # 解决办法-恢复虚拟网卡默认设置 1、下载并打开ccleaner,ccleaner官网:CCleaner M…

【苍穹外卖】HttpClient-快速理解入门

目录 HttpClient-快速理解&入门1. 需求2. 如何使用3. 具体示例4. 大致优点5. 大致缺点 HttpClient-快速理解&入门 1. 需求 在平常访问服务器里面的资源的时候,我们通常是通过浏览器输入网址(或者在浏览器点击某个连接)这种方式&…

OpenCV杂记(2):图像拼接(hconcat, vconcat)

OpenCV杂记(1):绘制OSD(cv::getTextSize, cv::putText)https://blog.csdn.net/tecsai/article/details/137872058 1. 简述 做图像处理或计算机视觉技术的同学都知道,我们在工作中会经常遇到需要将两幅图像拼…

Spring Boot中判断轨迹数据是否经过设置的打卡点,且在PGSQL中把点拼接成线,判断某个点是否在线上或在线的50米范围内

问题描述 轨迹数据判断是否经过打卡点,轨迹数据太多,循环判断的话非常消耗内存。解决办法只需要把所有轨迹数据点拼成了一条线,然后只需要循环打卡点即可,打卡点不多,一般不会超过100个,如果多的话&#x…

苹果手机远程打卡教程

关于苹果手机远程打卡教程之——有电脑零成本版 📎个人主页:我的主页 📎小白一枚,欢迎指教👏 嗨嗨嗨,今天来出一期iPhone实现远程打卡的教程,让我们可以随时随地的打卡wherever~ 准…

shell进阶之正则表达式:字符转义(十七)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

【深度学习】烟雾和火焰数据集,野外数据集,超大量数据集,目标检测,YOLOv5

标注了2w张数据集,是目标检测yolo格式的,有火焰、烟雾两个目标。 训练方法看这里: https://qq742971636.blog.csdn.net/article/details/138097481 打包 依据不一样的需求, 详情请查看 https://docs.qq.com/sheet/DUEdqZ2l…

在windows系统中安装kafka配置全步骤记录

在windows系统中安装kafka配置全步骤记录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 例如:第一章 Python 机器学习入门之pandas的使用 提示:写完文章后,目录可以自动生成,如何生成可…

软考高级架构师:AI 通俗讲解负载测试、压力测试、强度测试、容量测试和可靠性测试

在软件工程领域,测试是一个确保软件质量和性能的关键步骤。负载测试、压力测试、强度测试、容量测试和可靠性测试都是性能测试的不同类型,它们的目的和方法有所不同。 下面我将通过简单的比喻和解释,帮助您理解这些测试之间的区别。 负载测试…

Vue阶段练习:tab栏、进度条、

阶段练习旨在学习完Vue 指令、计算属性、侦听器-CSDN博客后,进行自我检测,每个练习分为效果显示、需求分析、静态代码、完整代码、总结 四个部分,效果显示和准备代码已给出,我们需要完成“完整代码”部分。 练习1:tab栏…

3Darray 修改array值然后保存图片

from PIL import Image import numpy as np img_path ./000001.jpg # 读取图片 image Image.open(img_path) width, height image.size print("图片的宽度为{},高度为{}".format(width,height)) print("图片的mode为{}".format(image.mode)) print(&quo…

arm编译、u-boot编译过程、linux内核编译

arm编译 我们之前在linux编译时使用gcc就行,但是在arm中我们需使用arm-linux-gcc 我们需安装交叉编译工具,地址就在119行 若没有,可自行在网上下载 u-boot编译过程 u-boot作为开源项目,可在其官网下载源码,官网 但在实际开发过程中,我们不会直接去u-boot官网下载源码…