【PCL】教程global_hypothesis_verification 通过验证模型假设来实现 3D 对象识别与位姿估计...

e21e472e9a7e0db0b6fbbd24d37a4d6b.png

测试程序1

2457159c971a14103c057750f8183eb7.png

milk.pcd milk_cartoon_all_small_clorox.pcd

终端输出1:

Model total points: 12575; Selected Keypoints: 193
Scene total points: 307200; Selected Keypoints: 7739
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 2034
[pcl::SHOTEstimation::createBinDistanceShape] Point 3952 has 1 (7.692307%) NaN normals in its neighbourhood
[pcl::SHOTEstimation::createBinDistanceShape] Point 4625 has 1 (5.263158%) NaN normals in its neighbourhood
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 797
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 238
[pcl::SHOTEstimation::createBinDistanceShape] Point 806 has 1 (4.761905%) NaN normals in its neighbourhood
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 3509
[pcl::SHOTEstimation::createBinDistanceShape] Point 4685 has 1 (2.857143%) NaN normals in its neighbourhood
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 1593
[pcl::SHOTEstimation::createBinDistanceShape] Point 4686 has 1 (2.941176%) NaN normals in its neighbourhood
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 1605
[pcl::SHOTEstimation::createBinDistanceShape] Point 3099 has 1 (2.500000%) NaN normals in its neighbourhood
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 3116
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 2097
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 3577
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 3629
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 2463
Correspondences found: 3394
Recognized Instances: 1


--- ICP ---------
Instance 0 Aligned!
-----------------


--- Hypotheses Verification ---
Occlusion cloud not set, using scene_cloud instead...
Computing cues took 1.4674ms.
Computing clutter cues took 2.948ms.
SA search... took 11.7504ms.
Instance 0 is bad!
-------------------------------

测试程序2

057ac5bfe7494df7833759410aa50c91.png

fe07bb917f31bdeb90dcd35b7fbf4cfa.png

milk.pcd milk_cartoon_all_small_clorox.pcd --cg_size 0.035

终端输出2:

Model total points: 12575; Selected Keypoints: 193
Scene total points: 307200; Selected Keypoints: 7739
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 2034
[pcl::SHOTEstimation::createBinDistanceShape] Point 3952 has 1 (7.692307%) NaN normals in its neighbourhood
[pcl::SHOTEstimation::createBinDistanceShape] Point 4625 has 1 (5.263158%) NaN normals in its neighbourhood
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 797
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 238
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 2097
[pcl::SHOTEstimation::createBinDistanceShape] Point 3099 has 1 (2.500000%) NaN normals in its neighbourhood
[pcl::SHOTEstimation::createBinDistanceShape] Point 806 has 1 (4.761905%) NaN normals in its neighbourhood
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 1593
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 3509
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 3116
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 3577
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 1605
[pcl::SHOTEstimation::createBinDistanceShape] Point 4685 has 1 (2.857143%) NaN normals in its neighbourhood
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 3629
[pcl::SHOTEstimation::createBinDistanceShape] Point 4686 has 1 (2.941176%) NaN normals in its neighbourhood
[pcl::SHOTEstimation::computeFeature] The local reference frame is not valid! Aborting description of point with index 2463
Correspondences found: 3394
Recognized Instances: 12


--- ICP ---------
Instance 0 Aligned!
Instance 1 Aligned!
Instance 2 Aligned!
Instance 3 Aligned!
Instance 4 Aligned!
Instance 5 Aligned!
Instance 6 Aligned!
Instance 7 Aligned!
Instance 8 Aligned!
Instance 9 Aligned!
Instance 10 Aligned!
Instance 11 Aligned!
-----------------


--- Hypotheses Verification ---
Occlusion cloud not set, using scene_cloud instead...
Computing cues took 53.9605ms.
Computing clutter cues took 3.4176ms.
SA search... took 36.8681ms.
Instance 0 is bad!
Instance 1 is bad!
Instance 2 is bad!
Instance 3 is bad!
Instance 4 is bad!
Instance 5 is bad!
Instance 6 is bad!
Instance 7 is bad!
Instance 8 is bad!
Instance 9 is bad!
Instance 10 is bad!
Instance 11 is bad!
-------------------------------

源码解析

这段代码是一个使用PCL(Point Cloud Library,点云库)的3D物体识别与位姿估计程序。它主要实现了以下几个步骤:

  1. 载入模型和场景的点云数据文件(.pcd)。

  2. 使用法线估计来计算点云中每个点的法线。

  3. 对点云进行均匀采样以提取关键点

  4. 为关键点计算SHOT描述子

  5. 建立模型与场景之间的对应关系。

  6. 使用Hough Transform或Geometric Consistency进行模型与场景关键点的分组。

  7. 对分组后的结果进行结构化的对齐(使用ICP算法迭代最近点对齐)。

  8. 应用假设验证算法来确定对象实例的存在,并验证这些假设。

  9. 可视化最后的结果。

各部分段落详细说明如下:

  • 包含库:引入PCL库中处理点云、特征提取、滤波、对齐、可视化等功能的头文件。

  • 类型定义:定义了点类型PointXYZRGBA和其他一些PCL使用的基本结构类型。

  • CloudStyle结构体:定义了点云的可视化风格,包括颜色和尺寸

  • 参数定义:声明了一系列的参数变量,如关键点的显示、使用的聚类算法、采样半径等,供之后的过程中使用。

  • 帮助信息函数showHelp():如果用户需要帮助,显示程序的使用方法和选项。

  • 解析命令行参数函数parseCommandLine():处理输入的命令行参数,设定程序运行时的选项。

  • main函数:程序的主入口点,调用上述的函数和处理数据的功能模块。

整个代码一开始通过解析命令行参数确定运行配置,然后依次加载模型和场景点云文件,对其进行处理并最后对齐和验证假设,如果检测到对象实例则进行可视化展示。

程序的方法是首先读取模型和现场的点云数据,并对这些数据进行预处理,比如通过均匀采样来减少计算量,然后使用法线估计为关键点计算出法线。利用关键点的描述子匹配模型和现场点云的关键点,匹配成功的关键点对用于后续的鲁棒匹配过程。之后,使用Hough变换或几何一致性(根据参数设定)来聚集对应关系及其估计对象的位姿。估计出的位姿经过ICP细化后,应用全局假设验证方法来确认哪些位姿是真实存在的。最后通过PCLVisualizer显示最终点云及其识别和验证的结果。

// 包含处理点云数据所需要的PCL库的头文件
#include <pcl/io/pcd_io.h> // 包含了读写PCD(Point Cloud Data)文件的功能
#include <pcl/point_cloud.h> // 定义了pcl::PointCloud<T>,用于存储点云
#include <pcl/correspondence.h> // 提供了寻找和管理点对应关系的方法
#include <pcl/features/normal_3d_omp.h> // 包含了计算点云法线的OMP(OpenMP)并行版本的函数
#include <pcl/features/shot_omp.h> // 包含了计算SHOT特征的OMP(OpenMP)并行版本的函数
#include <pcl/features/board.h> // 包含了计算BOARD特征的函数,常用于关键点描述
#include <pcl/filters/uniform_sampling.h> // 提供了一种均匀下采样的方法
#include <pcl/recognition/cg/hough_3d.h> // 包含了使用3D霍夫变换进行粗略配准的方法
#include <pcl/recognition/cg/geometric_consistency.h> // 提供了基于几何一致性的模型识别方法
#include <pcl/recognition/hv/hv_go.h> // 提供了一个全局假设验证的方法,用于模型识别和配准验证
#include <pcl/registration/icp.h> // 包含了迭代最近点(Iterative Closest Point,ICP)算法的实现
#include <pcl/visualization/pcl_visualizer.h> // 提供了点云可视化的类和方法
#include <pcl/kdtree/kdtree_flann.h> // 包含了基于FLANN的Kd树搜索的实现
#include <pcl/kdtree/impl/kdtree_flann.hpp> // 包含了Kd树搜索的实现代码,通常是模板类的实现部分
#include <pcl/common/transforms.h> // 提供了点云变换的方法,如旋转和平移
#include <pcl/console/parse.h> // 包含了解析命令行参数的函数


// 定义点云库中的几种重要数据类型
typedef pcl::PointXYZRGBA PointType;
typedef pcl::Normal NormalType;
typedef pcl::ReferenceFrame RFType;
typedef pcl::SHOT352 DescriptorType;


// 定义点云风格的结构体,包括颜色和大小
struct CloudStyle
{
    double r; // 红色分量
    double g; // 绿色分量
    double b; // 蓝色分量
    double size; // 点的大小


    // 构造函数,用于初始化点云的显示风格
    CloudStyle (double r,
                double g,
                double b,
                double size) :
        r (r),
        g (g),
        b (b),
        size (size)
    {
    }
};


// 定义几种不同的点云显示风格
CloudStyle style_white (255.0, 255.0, 255.0, 4.0);
CloudStyle style_red (255.0, 0.0, 0.0, 3.0);
CloudStyle style_green (0.0, 255.0, 0.0, 5.0);
CloudStyle style_cyan (93.0, 200.0, 217.0, 4.0);
CloudStyle style_violet (255.0, 0.0, 255.0, 8.0);


// 定义用来存储文件名的全局变量
std::string model_filename_;
std::string scene_filename_;


// 定义算法参数变量,这些参数可以通过命令行改变
bool show_keypoints_ (false); // 是否展示关键点
bool use_hough_ (true); // 是否使用霍夫聚类
float model_ss_ (0.02f); // 模型点云的采样大小
float scene_ss_ (0.02f); // 场景点云的采样大小
float rf_rad_ (0.015f); // 参考帧半径
float descr_rad_ (0.02f); // 描述子半径
float cg_size_ (0.01f); // 聚类大小
float cg_thresh_ (5.0f); // 聚类阈值
int icp_max_iter_ (5); // ICP 最大迭代次数
float icp_corr_distance_ (0.005f); // ICP 对应点对最大距离
float hv_resolution_ (0.005f); // 假设验证的分辨率
float hv_occupancy_grid_resolution_ (0.01f); // 占据网格分辨率
float hv_clutter_reg_ (5.0f); // 杂物正则化
float hv_inlier_th_ (0.005f); // 内点阈值
float hv_occlusion_th_ (0.01f); // 遮挡阈值
float hv_rad_clutter_ (0.03f); // 杂物半径
float hv_regularizer_ (3.0f); // 正则化器
float hv_rad_normals_ (0.05); // 法线半径
bool hv_detect_clutter_ (true); // 是否检测杂物


/**
 * 打印帮助信息
 * @param filename 可执行程序的名称
 */
void
showHelp (char *filename)
{
  // 打印帮助信息的头部
  std::cout << std::endl;
  std::cout << "***************************************************************************" << std::endl;
  std::cout << "*                                                                         *" << std::endl;
  std::cout << "*          全局假设验证教程 - 使用指南                                   *" << std::endl;
  std::cout << "*                                                                         *" << std::endl;
  std::cout << "***************************************************************************" << std::endl << std::endl;
  // 打印如何使用程序的指令格式
  std::cout << "用法: " << filename << " 模型文件名.pcd 场景文件名.pcd [选项]" << std::endl << std::endl;
  // 打印可以使用的选项和默认设置
  std::cout << "选项:" << std::endl;
  std::cout << "     -h:                          展示此帮助信息。" << std::endl;
  std::cout << "     -k:                          展示关键点。" << std::endl;
  std::cout << "     --algorithm (Hough|GC):      使用的聚类算法(默认为Hough)。" << std::endl;
  std::cout << "     --model_ss val:              模型均匀采样半径(默认 " << model_ss_ << ")" << std::endl;
  std::cout << "     --scene_ss val:              场景均匀采样半径(默认 " << scene_ss_ << ")" << std::endl;
  std::cout << "     --rf_rad val:                参考帧半径(默认 " << rf_rad_ << ")" << std::endl;
  std::cout << "     --descr_rad val:             描述符半径(默认 " << descr_rad_ << ")" << std::endl;
  std::cout << "     --cg_size val:               聚类大小(默认 " << cg_size_ << ")" << std::endl;
  std::cout << "     --cg_thresh val:             聚类阈值(默认 " << cg_thresh_ << ")" << std::endl << std::endl;
  std::cout << "     --icp_max_iter val:          ICP最大迭代次数(默认 " << icp_max_iter_ << ")" << std::endl;
  std::cout << "     --icp_corr_distance val:     ICP对应点距离(默认 " << icp_corr_distance_ << ")" << std::endl << std::endl;
  std::cout << "     --hv_clutter_reg val:        杂物调整器(默认 " << hv_clutter_reg_ << ")" << std::endl;
  std::cout << "     --hv_inlier_th val:          内点阈值(默认 " << hv_inlier_th_ << ")" << std::endl;
  std::cout << "     --hv_occlusion_th val:       遮挡阈值(默认 " << hv_occlusion_th_ << ")" << std::endl;
  std::cout << "     --hv_rad_clutter val:        杂物半径(默认 " << hv_rad_clutter_ << ")" << std::endl;
  std::cout << "     --hv_regularizer val:        正则化值(默认 " << hv_regularizer_ << ")" << std::endl;
  std::cout << "     --hv_rad_normals val:        法向量半径(默认 " << hv_rad_normals_ << ")" << std::endl;
  std::cout << "     --hv_detect_clutter val:     如果启用杂物检测为TRUE(默认 " << hv_detect_clutter_ << ")" << std::endl << std::endl;
}


/**
 * 解析命令行参数
 * @param argc 参数数量
 * @param argv 参数数组
 */
void
parseCommandLine (int argc,
                  char *argv[])
{
  // 显示帮助信息
  if (pcl::console::find_switch (argc, argv, "-h"))
  {
    showHelp (argv[0]); // 如果参数中有-h,调用showHelp函数显示帮助信息
    exit (0); // 然后退出程序
  }


  // 解析模型和场景文件名
  std::vector<int> filenames; // 存储文件名参数的向量
  filenames = pcl::console::parse_file_extension_argument (argc, argv, ".pcd"); // 获取pcd文件的参数位置
  if (filenames.size () != 2) // 如果不是两个文件名,说明参数有误
  {
    std::cout << "文件名缺失。\n"; // 打印错误信息
    showHelp (argv[0]); // 显示帮助信息
    exit (-1); // 退出程序
  }


  model_filename_ = argv[filenames[0]]; // 设置模型文件名
  scene_filename_ = argv[filenames[1]]; // 设置场景文件名


  // 解析程序行为参数
  if (pcl::console::find_switch (argc, argv, "-k"))
  {
    show_keypoints_ = true; // 如果有-k参数,设置展示关键点为true
  }


  std::string used_algorithm; // 存储使用的算法
  // 解析--algorithm参数,如果指定了就更新use_hough_的值
  if (pcl::console::parse_argument (argc, argv, "--algorithm", used_algorithm) != -1)
  {
    if (used_algorithm.compare ("Hough") == 0) // 比较算法名称
    {
      use_hough_ = true;
    }
    else if (used_algorithm.compare ("GC") == 0)
    {
      use_hough_ = false;
    }
    else
    {
      std::cout << "算法名称错误。\n"; // 如果不是上述两种算法,打印错误信息
      showHelp (argv[0]); // 显示帮助信息
      exit (-1); // 退出程序
    }
  }


  // 解析通用参数
  // 使用pcl::console::parse_argument来解析命令行参数并更新对应的全局变量
  pcl::console::parse_argument (argc, argv, "--model_ss", model_ss_);
  pcl::console::parse_argument (argc, argv, "--scene_ss", scene_ss_);
  pcl::console::parse_argument (argc, argv, "--rf_rad", rf_rad_);
  pcl::console::parse_argument (argc, argv, "--descr_rad", descr_rad_);
  pcl::console::parse_argument (argc, argv, "--cg_size", cg_size_);
  pcl::console::parse_argument (argc, argv, "--cg_thresh", cg_thresh_);
  pcl::console::parse_argument (argc, argv, "--icp_max_iter", icp_max_iter_);
  pcl::console::parse_argument (argc, argv, "--icp_corr_distance", icp_corr_distance_);
  pcl::console::parse_argument (argc, argv, "--hv_clutter_reg", hv_clutter_reg_);
  pcl::console::parse_argument (argc, argv, "--hv_inlier_th", hv_inlier_th_);
  pcl::console::parse_argument (argc, argv, "--hv_occlusion_th", hv_occlusion_th_);
  pcl::console::parse_argument (argc, argv, "--hv_rad_clutter", hv_rad_clutter_);
  pcl::console::parse_argument (argc, argv, "--hv_regularizer", hv_regularizer_);
  pcl::console::parse_argument (argc, argv, "--hv_rad_normals", hv_rad_normals_);
  pcl::console::parse_argument (argc, argv, "--hv_detect_clutter", hv_detect_clutter_);
}


// 主函数
int
main (int argc,
      char *argv[])
{
  // 解析命令行参数
  parseCommandLine (argc, argv);


  // 初始化不同类型点云的智能指针
  pcl::PointCloud<PointType>::Ptr model (new pcl::PointCloud<PointType> ());
  pcl::PointCloud<PointType>::Ptr model_keypoints (new pcl::PointCloud<PointType> ());
  pcl::PointCloud<PointType>::Ptr scene (new pcl::PointCloud<PointType> ());
  pcl::PointCloud<PointType>::Ptr scene_keypoints (new pcl::PointCloud<PointType> ());
  pcl::PointCloud<NormalType>::Ptr model_normals (new pcl::PointCloud<NormalType> ());
  pcl::PointCloud<NormalType>::Ptr scene_normals (new pcl::PointCloud<NormalType> ());
  pcl::PointCloud<DescriptorType>::Ptr model_descriptors (new pcl::PointCloud<DescriptorType> ());
  pcl::PointCloud<DescriptorType>::Ptr scene_descriptors (new pcl::PointCloud<DescriptorType> ());


  // 读取点云文件
  if (pcl::io::loadPCDFile (model_filename_, *model) < 0) // 如果读取模型文件失败
  {
    std::cout << "Error loading model cloud." << std::endl; // 显示错误信息
    showHelp (argv[0]); // 显示帮助信息
    return (-1); // 退出程序
  }
  if (pcl::io::loadPCDFile (scene_filename_, *scene) < 0) // 如果读取场景文件失败
  {
    std::cout << "Error loading scene cloud." << std::endl; // 显示错误信息
    showHelp (argv[0]); // 显示帮助信息
    return (-1); // 退出程序
  }


  // 计算法线估算
  pcl::NormalEstimationOMP<PointType, NormalType> norm_est;
  norm_est.setKSearch (10); // 设置在估算一个点法线时考虑多少个最近点
  norm_est.setInputCloud (model); // 设置输入点云(模型)
  norm_est.compute (*model_normals); // 计算点云法线


  norm_est.setInputCloud (scene); // 设置输入点云(场景)
  norm_est.compute (*scene_normals); // 计算点云法线


  // 对点云进行下采样,以提取关键点
  pcl::UniformSampling<PointType> uniform_sampling;
  uniform_sampling.setInputCloud (model); // 设置输入点云(模型)
  uniform_sampling.setRadiusSearch (model_ss_); // 设置搜索半径
  uniform_sampling.filter (*model_keypoints); // 过滤操作,结果保存在model_keypoints
  std::cout << "Model total points: " << model->size () << "; Selected Keypoints: " << model_keypoints->size () << std::endl;


  uniform_sampling.setInputCloud (scene); // 设置输入点云(场景)
  uniform_sampling.setRadiusSearch (scene_ss_); // 设置搜索半径
  uniform_sampling.filter (*scene_keypoints); // 过滤操作,结果保存在scene_keypoints
  std::cout << "Scene total points: " << scene->size () << "; Selected Keypoints: " << scene_keypoints->size () << std::endl;


  // 计算关键点的描述子
  pcl::SHOTEstimationOMP<PointType, NormalType, DescriptorType> descr_est;
  descr_est.setRadiusSearch (descr_rad_); // 设置描述子搜索半径


  descr_est.setInputCloud (model_keypoints); // 设置输入点云(模型关键点)
  descr_est.setInputNormals (model_normals); // 设置输入法线
  descr_est.setSearchSurface (model); // 设置搜索表面
  descr_est.compute (*model_descriptors); // 计算描述子


  descr_est.setInputCloud (scene_keypoints); // 设置输入点云(场景关键点)
  descr_est.setInputNormals (scene_normals); // 设置输入法线
  descr_est.setSearchSurface (scene); // 设置搜索表面
  descr_est.compute (*scene_descriptors); // 计算描述子


  // 使用Kd树查找模型与场景之间的对应关系
  pcl::CorrespondencesPtr model_scene_corrs (new pcl::Correspondences ());
  pcl::KdTreeFLANN<DescriptorType> match_search;
  match_search.setInputCloud (model_descriptors);
  std::vector<int> model_good_keypoints_indices;
  std::vector<int> scene_good_keypoints_indices;


  // 在点云描述子中找出最相似的点对应关系
  for (std::size_t i = 0; i < scene_descriptors->size (); ++i)
  {
    // 如果描述子是非有限数(比如NaN等),则跳过
    if (!std::isfinite (scene_descriptors->at (i).descriptor[0])) 
    {
      continue;
    }
    // 在模型描述子中找到与当前场景描述子最接近的一点
    std::vector<int> neigh_indices (1);
    std::vector<float> neigh_sqr_dists (1);
    int found_neighs = match_search.nearestKSearch (scene_descriptors->at (i), 1, neigh_indices, neigh_sqr_dists);
    // 如果这一点确实存在,并且距离小于一个阈值(这里设为0.25f),则认为这是一对匹配点
    if (found_neighs == 1 && neigh_sqr_dists[0] < 0.25f)
    {
      pcl::Correspondence corr (neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]);
      model_scene_corrs->push_back (corr); // 将对应关系添加到对应关系集
      model_good_keypoints_indices.push_back (corr.index_query); // 储存好的模型关键点索引
      scene_good_keypoints_indices.push_back (corr.index_match); // 存储好的场景关键点索引
    }
  }
  pcl::PointCloud<PointType>::Ptr model_good_kp (new pcl::PointCloud<PointType> ());
  pcl::PointCloud<PointType>::Ptr scene_good_kp (new pcl::PointCloud<PointType> ());
  pcl::copyPointCloud (*model_keypoints, model_good_keypoints_indices, *model_good_kp); // 复制好的模型关键点为新的点云数据
  pcl::copyPointCloud (*scene_keypoints, scene_good_keypoints_indices, *scene_good_kp); // 复制好的场景关键点为新的点云数据


  std::cout << "Correspondences found: " << model_scene_corrs->size () << std::endl; // 输出找到的对应关系个数


  // 聚类
  std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations; // 存储旋转和平移变换
  std::vector < pcl::Correspondences > clustered_corrs; // 存储聚类后的对应关系


  // 判断是否使用Hough变换方法
  if (use_hough_)
  {
    // 初始化模型和场景的参考帧点云
    pcl::PointCloud<RFType>::Ptr model_rf (new pcl::PointCloud<RFType>());
    pcl::PointCloud<RFType>::Ptr scene_rf (new pcl::PointCloud<RFType>());


    // 设置参考帧估计的参数和对象
    pcl::BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est;
    rf_est.setFindHoles(true); // 设置是否寻找孔洞
    rf_est.setRadiusSearch(rf_rad_); // 设置搜索半径


    // 对模型点云计算参考帧
    rf_est.setInputCloud(model_keypoints);
    rf_est.setInputNormals(model_normals);
    rf_est.setSearchSurface(model);
    rf_est.compute(*model_rf);


    // 对场景点云计算参考帧
    rf_est.setInputCloud(scene_keypoints);
    rf_est.setInputNormals(scene_normals);
    rf_est.setSearchSurface(scene);
    rf_est.compute(*scene_rf);


    // 设置Hough聚类的参数和对象
    pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer;
    clusterer.setHoughBinSize(cg_size_); // 设置Hough空间的bin大小
    clusterer.setHoughThreshold(cg_thresh_); // 设置Hough空间的阈值
    clusterer.setUseInterpolation(true); // 设置是否使用插值
    clusterer.setUseDistanceWeight(false); // 设置是否使用距离加权


    // 设置Hough聚类的输入
    clusterer.setInputCloud(model_keypoints);
    clusterer.setInputRf(model_rf);
    clusterer.setSceneCloud(scene_keypoints);
    clusterer.setSceneRf(scene_rf);
    clusterer.setModelSceneCorrespondences(model_scene_corrs);


    // 执行识别,获取旋转和平移矩阵,及聚类后的对应关系
    clusterer.recognize(rototranslations, clustered_corrs);
  }
  else
  {
    // 若不使用Hough方法,则使用几何一致性聚类方法
    pcl::GeometricConsistencyGrouping<PointType, PointType> gc_clusterer;
    gc_clusterer.setGCSize(cg_size_); // 设置聚类大小
    gc_clusterer.setGCThreshold(cg_thresh_); // 设置聚类阈值


    // 设置几何一致性聚类的输入
    gc_clusterer.setInputCloud(model_keypoints);
    gc_clusterer.setSceneCloud(scene_keypoints);
    gc_clusterer.setModelSceneCorrespondences(model_scene_corrs);


    // 执行识别,获取旋转和平移矩阵,及聚类后的对应关系
    gc_clusterer.recognize(rototranslations, clustered_corrs);
  }


  // 如果没有找到任何实例,则停止
  if (rototranslations.size() <= 0)
  {
    std::cout << "*** No instances found! ***" << std::endl;
    return (0);
  }
  else
  {
    std::cout << "Recognized Instances: " << rototranslations.size() << std::endl << std::endl;
  }


  /**
   * 为每个发现的实例生成点云
   */
  std::vector<pcl::PointCloud<PointType>::ConstPtr> instances;
  
  // 遍历所有的旋转平移矩阵(rototranslations)
  for (std::size_t i = 0; i < rototranslations.size(); ++i)
  {
    // 根据当前的rototranslations对模型点云进行变换
    pcl::PointCloud<PointType>::Ptr rotated_model(new pcl::PointCloud<PointType>());
    pcl::transformPointCloud(*model, *rotated_model, rototranslations[i]);
    // 把变换后的模型加入到instances集合中
    instances.push_back(rotated_model);
  }
  
  /**
   * ICP(迭代最近点)算法
   */
  std::vector<pcl::PointCloud<PointType>::ConstPtr> registered_instances; // 用来存放ICP算法对齐后的实例
  // 如果需要执行ICP算法
  if (true)
  {
    std::cout << "--- ICP ---------" << std::endl;
  
    // 遍历所有的实例(instances)
    for (std::size_t i = 0; i < rototranslations.size(); ++i)
    {
      // 创建ICP对象并设置参数
      pcl::IterativeClosestPoint<PointType, PointType> icp;
      icp.setMaximumIterations(icp_max_iter_);
      icp.setMaxCorrespondenceDistance(icp_corr_distance_);
      icp.setInputTarget(scene);         // 设置目标点云(场景)
      icp.setInputSource(instances[i]);  // 设置源点云(模型实例)
      pcl::PointCloud<PointType>::Ptr registered(new pcl::PointCloud<PointType>()); // 创建用于存储对齐后点云的对象
      icp.align(*registered); // 执行ICP算法
      registered_instances.push_back(registered); // 把对齐后的点云存入registered_instances
      std::cout << "Instance " << i << " ";
      // 输出ICP算法是否收敛以及对齐质量
      if (icp.hasConverged())
      {
        std::cout << "Aligned!" << std::endl;
      }
      else
      {
        std::cout << "Not Aligned!" << std::endl;
      }
    }
  
    std::cout << "-----------------" << std::endl << std::endl;
  }
  
  /**
   * 假设验证
   */
  std::cout << "--- Hypotheses Verification ---" << std::endl;
  std::vector<bool> hypotheses_mask; // 创建一个用于存放验证结果的布尔向量
  
  // 创建全局假设验证对象
  pcl::GlobalHypothesesVerification<PointType, PointType> GoHv;
  
  // 设置该对象的场景点云
  GoHv.setSceneCloud(scene);
  // 将ICP算法后注册的点云模型添加到全局假设验证中,设置为真实模型
  GoHv.addModels(registered_instances, true);
  // 设置全局假设验证的分辨率
  GoHv.setResolution(hv_resolution_);
  // 设置占用栅格的分辨率
  GoHv.setResolutionOccupancyGrid(hv_occupancy_grid_resolution_);
  // 设置内点阈值
  GoHv.setInlierThreshold(hv_inlier_th_);
  // 设置遮挡阈值
  GoHv.setOcclusionThreshold(hv_occlusion_th_);
  // 设置正则化器的值
  GoHv.setRegularizer(hv_regularizer_);
  // 设置杂波的半径
  GoHv.setRadiusClutter(hv_rad_clutter_);
  // 设置杂波正则化器的值
  GoHv.setClutterRegularizer(hv_clutter_reg_);
  // 设置是否检测杂波
  GoHv.setDetectClutter(hv_detect_clutter_);
  // 设置法线的半径
  GoHv.setRadiusNormals(hv_rad_normals_);
  
  // 运行假设验证
  GoHv.verify();
  // 获取假设验证的结果,对于数组中每个元素如果是真则表明对应的模型满足假设验证
  GoHv.getMask(hypotheses_mask);
  
  // 对于每个模型实例,打印它是否通过了假设验证
  for (std::size_t i = 0; i < hypotheses_mask.size(); i++)
  {
    if (hypotheses_mask[i])
    {
      std::cout << "Instance " << i << " is GOOD! <---" << std::endl;
    }
    else
    {
      std::cout << "Instance " << i << " is bad!" << std::endl;
    }
  }
  std::cout << "-------------------------------" << std::endl;
  
  /**
   * 可视化
   */
  // 创建一个PCLVisualizer视窗并添加场景点云
  pcl::visualization::PCLVisualizer viewer("Hypotheses Verification");
  viewer.addPointCloud(scene, "scene_cloud");
  
  // 创建和变换用于可视化的点云
  pcl::PointCloud<PointType>::Ptr off_scene_model(new pcl::PointCloud<PointType>());
  pcl::PointCloud<PointType>::Ptr off_scene_model_keypoints(new pcl::PointCloud<PointType>());
  
  pcl::PointCloud<PointType>::Ptr off_model_good_kp(new pcl::PointCloud<PointType>());
  // 对模型点云进行平移变换以便在视窗中清晰显示
  pcl::transformPointCloud(*model, *off_scene_model, Eigen::Vector3f(-1, 0, 0), Eigen::Quaternionf(1, 0, 0, 0));
  pcl::transformPointCloud(*model_keypoints, *off_scene_model_keypoints, Eigen::Vector3f(-1, 0, 0), Eigen::Quaternionf(1, 0, 0, 0));
  pcl::transformPointCloud(*model_good_kp, *off_model_good_kp, Eigen::Vector3f(-1, 0, 0), Eigen::Quaternionf(1, 0, 0, 0));
  
  // 如果设置为显示关键点
  if (show_keypoints_)
  {
    // 定义好点云样式为白色
    CloudStyle modelStyle = style_white;
    // 用自定义颜色处理器设置点云颜色
    pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_color_handler(off_scene_model, modelStyle.r, modelStyle.g, modelStyle.b);
    // 把模型点云添加到可视化对象中
    viewer.addPointCloud(off_scene_model, off_scene_model_color_handler, "off_scene_model");
    // 设置点云的渲染属性(如点大小)
    viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, modelStyle.size, "off_scene_model");
  }
  
  // 如果设置为显示关键点
  if (show_keypoints_)
  {
    // 定义好点云样式为紫色
    CloudStyle goodKeypointStyle = style_violet;
    // 用自定义颜色处理器设置好的模型关键点点云颜色
    pcl::visualization::PointCloudColorHandlerCustom<PointType> model_good_keypoints_color_handler(off_model_good_kp, goodKeypointStyle.r, goodKeypointStyle.g, goodKeypointStyle.b);
    // 把好的模型关键点点云添加到可视化对象中
    viewer.addPointCloud(off_model_good_kp, model_good_keypoints_color_handler, "model_good_keypoints");
    // 设置点云的渲染属性(如点大小)
    viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, goodKeypointStyle.size, "model_good_keypoints");
  
    // 用自定义颜色处理器设置好的场景关键点点云颜色
    pcl::visualization::PointCloudColorHandlerCustom<PointType> scene_good_keypoints_color_handler(scene_good_kp, goodKeypointStyle.r, goodKeypointStyle.g, goodKeypointStyle.b);
    // 把好的场景关键点点云添加到可视化对象中
    viewer.addPointCloud(scene_good_kp, scene_good_keypoints_color_handler, "scene_good_keypoints");
    // 设置点云的渲染属性(如点大小)
    viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, goodKeypointStyle.size, "scene_good_keypoints");
  }
  
  // 遍历所有实例并将它们添加到可视化对象中
  for (std::size_t i = 0; i < instances.size(); ++i)
  {
    // 创建字符串流以构造实例的标签
    std::stringstream ss_instance;
    ss_instance << "instance_" << i;
  
    // 定义实例点云样式为红色
    CloudStyle clusterStyle = style_red;
    // 用自定义颜色处理器设置实例点云颜色
    pcl::visualization::PointCloudColorHandlerCustom<PointType> instance_color_handler(instances[i], clusterStyle.r, clusterStyle.g, clusterStyle.b);
    // 把实例点云添加到可视化对象中
    viewer.addPointCloud(instances[i], instance_color_handler, ss_instance.str ());
    // 设置点云的渲染属性(如点大小)
    viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, clusterStyle.size, ss_instance.str ());
  
    // 根据假设验证的结果设置对齐后实例点云的颜色为绿色或青色
    CloudStyle registeredStyles = hypotheses_mask[i] ? style_green : style_cyan;
    ss_instance << "_registered";
    // 用自定义颜色处理器设置对齐后实例点云颜色
    pcl::visualization::PointCloudColorHandlerCustom<PointType> registered_instance_color_handler(registered_instances[i], registeredStyles.r, registeredStyles.g, registeredStyles.b);
    // 把对齐后实例点云添加到可视化对象中
    viewer.addPointCloud(registered_instances[i], registered_instance_color_handler, ss_instance.str ());
    // 设置点云的渲染属性(如点大小)
    viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, registeredStyles.size, ss_instance.str ());
  }
  // 开始渲染循环直到用户关闭窗口
  while (!viewer.wasStopped())
  {
    viewer.spinOnce();
  }


  return (0); // 程序正常退出
}
pcl::GlobalHypothesesVerification<PointType, PointType> GoHv;

1748e0acdf027918e82fc6d27aae5bfe.png

pcl::IterativeClosestPoint<PointType, PointType> icp;

9b0fafcd6fb9b9b25efd0aab28e5b6ac.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/566020.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

若依集成mybatisplus报错找不到xml

引用&#xff1a;https://blog.csdn.net/qq_65080131/article/details/136677276 MybatisPlusAutoConfiguration中可以知道&#xff0c;系统会自动配置SqlSessionFactory&#xff0c;&#xff0c;但是&#xff0c;当你有自定义的SqlSessionFactory&#xff0c;&#xff0c;就会…

Spark-机器学习(4)回归学习之逻辑回归

在之前的文章中&#xff0c;我们来学习我们回归中的线性回归&#xff0c;了解了它的算法&#xff0c;知道了它的用法&#xff0c;并带来了简单案例。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请…

NCH WavePad for Mac:功能全面的音频编辑利器

NCH WavePad for Mac是一款功能全面的音频编辑软件&#xff0c;专为Mac用户设计。它集音频录制、编辑、处理和效果添加于一体&#xff0c;为用户提供一站式的音频解决方案。 NCH WavePad for Mac v19.16注册版下载 作为一款专业的音频编辑器&#xff0c;WavePad支持对音频文件进…

软件测试之【合理的利用GPT来辅助软件测试一】

读者大大们好呀&#xff01;&#xff01;!☀️☀️☀️ &#x1f525; 欢迎来到我的博客 &#x1f440;期待大大的关注哦❗️❗️❗️ &#x1f680;欢迎收看我的主页文章➡️寻至善的主页 文章目录 前言GPT的原理及技巧GPT辅助接口自动化测试 前言 在编程基础栏目中&#xff…

OSI七层模型、TCP/IP五层模型理解(个人解读,如何理解网络模型)

OSI七层模型 七层模型&#xff0c;亦称OSI&#xff08;Open System Interconnection&#xff09;。参考模型是国际标准化组织&#xff08;ISO&#xff09;制定的一个用于计算机或通信系统间互联的标准体系&#xff0c;一般称为OSI参考模型或七层模型。它是一个七层的、抽象的模…

漫谈HAMR硬盘的可靠性-2

很显然&#xff0c;HAMR已经成为业内用于提升HDD硬盘容量硬盘的技术手段。三家机械硬盘HDD厂商&#xff0c;希捷、西数、东芝都已对HAMR硬盘进行了十多年的研究&#xff0c;但只有希捷大胆押注HAMR。相反&#xff0c;东芝和西部数据在采用HAMR之前选择了能量辅助垂直磁记录&…

Qt 跨平台开发

Qt 跨平台开发 文章目录 Qt 跨平台开发摘要第一 \ & /第二 神奇{不能换行显示第三 预处理宏 关键字&#xff1a; Qt、 win、 linux、 lib、 MSVC 摘要 最近一直在琢磨Qt跨平台开发的问题&#xff0c;缘由有以下几个&#xff0c; 首先第一个&#xff0c;我们目前开发…

如何查看redisson-spring-boot-starter和SpringBoot 对应版本

如何查看redisson-spring-boot-starter和SpringBoot 对应版本 我目前没有找到官网的地址来来查看对应关系。 所以我只能找pom.xml来查看 先在mvnrepository 找到redisson-spring-boot-starter的列表 具体地址是&#xff1a;https://mvnrepository.com/artifact/org.redisso…

查看项目go代码cpu利用率

1.代码添加&#xff1a; "net/http"_ "net/http/pprof"第二步&#xff0c;在代码开始运行的地方加上go func() {log.Println(http.ListenAndServe(":6060", nil))}() 2.服务器上防火墙把6060打开 3.电脑安装&#xff1a;Download | Graphviz …

Quarto Dashboards 教程 2:Dashboard Layout

「写在前面」 学习一个软件最好的方法就是啃它的官方文档。本着自己学习、分享他人的态度&#xff0c;分享官方文档的中文教程。软件可能随时更新&#xff0c;建议配合官方文档一起阅读。推荐先按顺序阅读往期内容&#xff1a; 1.quarto 教程 1&#xff1a;Hello, Quarto 2.qu…

【无监督+自然语言】GPT,GPT-2,GPT-3 方法概述 (Generative Pre-Traning)

主要参考 【GPT&#xff0c;GPT-2&#xff0c;GPT-3 论文精读【李沐论文精读】-2022.03.04】 https://www.bilibili.com/video/BV1AF411b7xQ/ 大语言模型综述&#xff1a; http://t.csdnimg.cn/4obR4 发展节点 2017.06 Transformer: 所有大语言模型LLMs的基础结构 , Attent…

Ubuntu下使用VisualStudioCode进行Java开发

0-1开始Java语言编程之路 一、Ubuntu下Java语言环境搭建 二、Ubuntu下Docker环境安装 三、使用Docker搭建本地Nexus Maven私有仓库 四、Ubuntu下使用VisualStudioCode进行Java开发 Visual Studio Code 下载 点击这个链接Visual Studio Code&#xff0c;进入VisualStudioCode的…

IDEA2023版本创建Sping项目无法使用Java8

1. 问题复现 1.1 当前版本2023.3.2 1.2 创建项目时&#xff1a;不存在jdk8选项 提示报错 1.3 原因分析 Spring官方发布Spring Boot 3.0.0 的时候告知了一些情况&#xff0c;Java 17将成为未来的主流版本 2. 如何解决 2.1 替换创建项目的源 我们只知道IDEA页面创建Spring项目…

CMake 编译项目

一、概述 cmake 是C一个很重要的编译和项目管理工具&#xff0c;我们在git 上以及常见的项目现在多数都是用cmake 管理的&#xff0c;那么我们今天就做一个同时有Opencv和CGAL 以及PCL 的项目。 二、项目管理 重点是CMakeList.txt 1、CMakeList.txt cmake_minimum_requir…

springcloudgateway集成knife4j

上篇我们聊聊springboot是怎么继承knife4j的。springboot3 集成knife4j-CSDN博客 本次我们一起学习springcloudgateway集成knife4j。 环境介绍 java&#xff1a;17 SpringBoot&#xff1a;3.2.0 SpringCloud&#xff1a;2023.0.0 knife4j &#xff1a; 4.4.0 引入maven配置…

javaEE初阶——多线程(八)——常见的锁策略 以及 CAS机制

T04BF &#x1f44b;专栏: 算法|JAVA|MySQL|C语言 &#x1faf5; 小比特 大梦想 此篇文章与大家分享分治算法关于多线程进阶的章节——关于常见的锁策略以及CAS机制 如果有不足的或者错误的请您指出! 多线程进阶 1.常见的锁策略 我们需要了解的是,我们使用是锁,在加锁 / 解锁…

树莓派学习笔记--Raspberry Pi OS系统烧录、SSH远程连接、VNC远程连接、设置静态IP地址

前言&#xff1a; 由于一些比赛的需求&#xff0c;目前我将开启一段时间的树莓派学习。目前还是处于一个啥也不知道的萌新状态。希望通过短期的学习能掌握树莓派的基本使用。 树莓派其实就是一个微型电脑&#xff0c;下面这个图是b站大佬整理的树莓派的各种型号配置&#xff0c…

LabVIEW轴承表面缺陷检测系统

LabVIEW轴承表面缺陷检测系统 为了解决轴承生产中人工检测效率低下、误检率高的问题&#xff0c;实现了一套基于LabVIEW的轴承表面缺陷自动检测系统。该系统利用工业相机采集轴承图像&#xff0c;通过图像处理技术对轴承表面的划痕缺陷和倒角缺陷进行自动识别和分析&#xff0…

使用excel文件生成sql脚本

目录 1、excel文件脚本变量2、公式示例 前言&#xff1a;在系统使用初期有一些基础数据需要从excel中导入到数据库中&#xff0c;直接导入的话可能有些字段用不上&#xff0c;所以就弄一个excel生成sql的导入脚本&#xff0c;这样可以将需要的数据填到指定的列即可生成sql。 1、…

Valentina Studio Pro for Mac:强大的数据库管理工具

Valentina Studio Pro for Mac是一款功能全面、操作高效的数据库管理工具&#xff0c;专为Mac用户设计&#xff0c;旨在帮助用户轻松管理各种类型的数据库。 Valentina Studio Pro for Mac v13.10激活版下载 该软件拥有直观的用户界面&#xff0c;使得数据库管理变得简单直观。…