我在本地部署通义千问Qwen1.5大模型,并实现简单的对话和RAG

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

汇总合集:《大模型面试宝典》(2024版) 发布!


这篇文章中,我们将开源的大模型部署到本地,并实现简单的对话和RAG。

环境准备

本地实验环境:

系统:Win11
显卡:1070(8G显存)

首先更新显卡驱动到最新版本,可以去官网下载或者直接在NVIDIA Geforce Experience中直接更新驱动到最新版本,新版本的驱动向下兼容更多版本的CUDA。

图片

查看显卡驱动支持的CUDA的最高版本,小于等于此版本的CUDA均可以使用。CMD或powershell中执行如下命令:

nvidia-smi

图片

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗技术与面试交流群, 想要获取最新面试题、了解最新面试动态的、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:技术交流

在https://pytorch.org/查看当前最新版PyTorch支持最低Python版本为3.8,支持CUDA的11.8和12.1版本,后面我们选择安装12.1版本。

图片

最终生成的命令可以拷贝出来,下文需要使用。

安装CUDA 12.1(可选)

此步骤可选,不安装的话后面Torch会自动安装

下载地址:

https://developer.nvidia.com/cuda-12-1-1-download-archive

图片

下载完成后直接安装即可,如果已经安装需要先卸载后再装。

安装conda

conda可以用来管理Python环境,后面我们会使用conda创建一个Python3.10的运行环境。

下载地址:

https://www.anaconda.com/download

安装完成后,为了能在命令行中使用,需要将conda的相关目录加入环境变量,例如安装在D:\developer\anaconda,则需要将以下目录添加到PATH中:

D:\developer\anaconda
D:\developer\anaconda\Scripts
D:\developer\anaconda\Library\bin
D:\developer\anaconda\Library\mingw-w64\bin

打开powershell,执行conda init初始化conda的powershell和cmd环境,linux下会初始化bash环境,初始化后方便进入conda创建的Python环境。

使用conda创建PyTorch环境

我们使用conda创建一个Python版本为3.10的Python运行环境,在命令行中执行如下命令:

conda create -n pytorch python=3.10
conda activate pytorch

使用上文中安装PyTorch的命令安装PyTorch

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

5下载模型

我们可以去模搭社区获取模型,国内的地址,下载速度快,不需要魔法可以直接访问。

模型库地址:https://modelscope.cn/models

这里使用Qwen1.5-0.5B-Chat这个对话模型进行体验,模型较小,占用内存少,生成速度快。

点击模型文件 -> 下载模型,可支持两种下载方式:Sdk和Git

我们通过git的方式将模型文件下载到本地

mkdir Qwen && cd Qwen
git clone https://www.modelscope.cn/qwen/Qwen1.5-0.5B-Chat.git
cd ..

加载模型

1. 模型功能验证

可以使用modelscope Library加载模型,使用方法与transformers相同,使用AutoModelForCausalLM.from_pretrained方法和AutoTokenizer.from_pretrained从本地文件中加载,如果路径不存在,这两个方法会自动到modelscope下载模型文件。

需要先安装modelscope库:

pip install modelscope transformers

使用量化模型的话需要安装以下库:

pip install optimum auto-gptq

创建一个Python文件,放到与上文Qwen文件夹同级的目录中,内容如下:

from threading import Thread

from modelscope import (AutoModelForCausalLM, AutoTokenizer)
from transformers import TextIteratorStreamer

device = "cuda"  # 将模型加载到哪个硬件,此处为GPU

model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen1.5-0.5B-Chat", # 模型文件夹路径
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat")

while True:
    user_input = input("请输入问题(q退出):")
    if user_input.lower() == "q":
        print("exit")
        break
    try:
        messages = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": user_input}
        ]
        text = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=False
        )
        inputs = tokenizer([text], return_tensors="pt").to(device)

        streamer = TextIteratorStreamer(tokenizer)
        generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512)
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        generated_text = ""
        count = 0
        for new_text in streamer:
            generated_text += new_text
            print(new_text, end="", flush=True)
        print()
    except Exception as e:
        print(f"出错了:{str(e)}")

上面的代码首先从本地模型文件夹中加载了模型和分词器,然后我们在一个循环中接收用户输入,并将输入处理后通过大模型进行内容生成。我们可以通过python运行上面的文件,运行后,就可以测试了,就测试运行效果如下:

图片

2. LangChain加载本地模型

到目前为止,我们已经在本地跑起来了一个千问0.5B大语言模型,接下来需要让langchain能够加载这个本地模型。

如果要用langchain加载模型,我们需要继承langchain.llms.base.LLM 类,并且重写_llm_type, _call方法,因为我们需要支持流式输出,就需要重写_stream方法。可参考langchain的官方文档:Custom LLM | 🦜️🔗 LangChain

下面是这个类的代码:

from abc import ABC
from threading import Thread
from typing import Any, List, Mapping, Optional, Iterator

from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain_core.outputs import GenerationChunk
from modelscope import AutoModelForCausalLM, AutoTokenizer
from transformers import TextIteratorStreamer

device = "cuda"  # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen1.5-0.5B-Chat",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat")


class QwenLocalLLM(LLM, ABC):
    max_token: int = 10000
    temperature: float = 0.01
    top_p = 0.9

    def __init__(self):
        super().__init__()

    @property
    def _llm_type(self) -> str:
        return "Qwen"

    def _call(
            self,
            prompt: str,
            stop: Optional[List[str]] = None,
            run_manager: Optional[CallbackManagerForLLMRun] = None,
            **kwargs: Any
    ) -> str:
        messages = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": prompt}
        ]
        text = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        model_inputs = tokenizer([text], return_tensors="pt").to(device)
        generated_ids = model.generate(
            model_inputs.input_ids,
            max_new_tokens=512
        )
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]

        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        return response

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {"max_token": self.max_token,
                "temperature": self.temperature,
                "top_p": self.top_p,
                "history_len": self.history_len}

    def _stream(
            self,
            prompt: str,
            stop: Optional[List[str]] = None,
            run_manager: Optional[CallbackManagerForLLMRun] = None,
            **kwargs: Any,
    ) -> Iterator[GenerationChunk]:
        try:
            messages = [
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": prompt}
            ]
            text = tokenizer.apply_chat_template(
                messages,
                tokenize=False,
                add_generation_prompt=False
            )
            inputs = tokenizer([text], return_tensors="pt").to(device)

            streamer = TextIteratorStreamer(tokenizer)
            generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512)
            thread = Thread(target=model.generate, kwargs=generation_kwargs)
            thread.start()
            generated_text = ""
            for new_text in streamer:
                generated_text += new_text
                print(new_text, end="", flush=True)
                yield GenerationChunk(
                    text=new_text
                )
            print()
        except Exception as e:
            print(f"出错了:{str(e)}")
            yield GenerationChunk(
                text=f"生成失败: {str(e)}"
            )

最后修改上一篇文章中的生成方法,将初始化千问模型的代码替换为上面的实现类:

# 替换前
model = Tongyi()
model.model_name = "qwen-max"

# 替换后
model = QwenLocalLLM()

效果展示

更换之前:

图片

图片

生成结果:

离线包更新的原理涉及以下几个方面:

  1. 离线包结构 :离线包通常是一个包含前端资源的.zip包,这些资源可以是HTML、CSS、JavaScript文件或者图片等。这些资源被组织在一起,以便客户端能够下载并离线使用。

  2. 离线包类型:可能有不同类型的离线包,比如全量包和增量包。全量包包含所有更新的资源,而增量包只包含与旧版本相比发生变化的资源。

  3. 渲染过程:当客户端应用启动或用户触发更新时,会通过特定的RPC调用获取最新的离线包信息。然后,客户端会下载这个包,并将其解压缩到本地的沙盒目录。如果配置了验签,客户端还会验证包的完整性。一旦包被成功解压和验证,客户端会使用新的资源来渲染页面。

  4. 更新流程:更新流程包括构建前端.zip包,在线生成.amr包(可能是处理签名和版本信息的打包格式),然后通过发布平台将包推送给客户端。客户端在接收到更新信息后,会下载并应用新的离线包。

  5. 检查和调试:如果客户端无法加载新包,可以通过检查RPC返回结果、确认加载的离线包信息、检查沙盒目录下的解压情况、验证签名以及使用Safari调试H5页面来排查问题。

  6. 客户端范围:在控制台上传新版本离线包时,需要指定支持的客户端版本范围,只有在这个范围内的客户端才能接收并更新离线包。

  7. 用户交互:在应用中,用户触发更新后,会收到提示,更新完成后可以访问使用新离线包的页面。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/565051.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

什么是防抖和节流?有什么区别? 如何实现?

防抖(Debounce)和节流(Throttle)是两种常用的技术手段,主要用于控制某个函数在一定时间内触发的次数,以减少触发频率,提高性能并避免资源浪费。 防抖(Debounce)的工作原…

掉落回弹问题(C语言)

一、N-S流程图&#xff1b; 二、运行结果&#xff1b; 三、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h>int main() {//初始化变量值&#xff1b;float b 100;float sum 0;int i 0;//运算&#xff1b;for (i 1; i < 10; i){//运算&…

【oceanbase】安装ocp,ocp部署oceanbase

https://www.oceanbase.com/docs/common-ocp-1000000000584989 资源 iphostnamecpumem组件192.168.0.71obnode-000-071816oceanbase-ce192.168.0.72obnode-000-072816oceanbase-ce192.168.0.73obnode-000-073816oceanbase-ce192.168.0.74obproxy-000-07424obproxy-ce192.168.0…

【北京迅为】《iTOP-3588开发板系统编程手册》-第16章 串口应用编程

RK3588是一款低功耗、高性能的处理器&#xff0c;适用于基于arm的PC和Edge计算设备、个人移动互联网设备等数字多媒体应用&#xff0c;RK3588支持8K视频编解码&#xff0c;内置GPU可以完全兼容OpenGLES 1.1、2.0和3.2。RK3588引入了新一代完全基于硬件的最大4800万像素ISP&…

291个地级市资源错配指数、劳动和资本相对扭曲指数(2006-2021年)

01、数据介绍 资源错配指数&#xff08;Misallocation Index&#xff09;是一个用于衡量资源配置效率的指标&#xff0c;它衡量的是生产要素的配置是否合理&#xff0c;是否达到了最优的状态。资源错配指数越高&#xff0c;资源的利用效率越低。资源错配指数主要用于衡量各种生…

学习STM32第十七天

备份域详解 一、简介 在参考手册的电源控制章节&#xff0c;提到了备份域&#xff0c;BKPR是在RTC外设中用到&#xff0c;包含20个备份数据寄存器&#xff08;80字节&#xff09;&#xff0c;备份域包括4KB的备份SRAM&#xff0c;以32位、16位或8位模式寻址&#xff0c;在VBAT…

SpringCloud系列(9)--将服务消费者Consumer注册进Eureka Server

前言&#xff1a;上一章节我们介绍了如何将服务提供者注册进Eureka服务里&#xff0c;本章节则介绍如何将服务消费者Consumer注册进Eureka服务里 Eureka架构原理图 1、修改consumer-order80子模块的pom.xml文件&#xff0c;引入Eureka Clinet的依赖&#xff0c;然后reolad一下&…

SVD奇异值分解原理及应用

-------------------------------------------------------------------------------------------------------------------------------- 首先说明&#xff1a;本文的内容来自百家号“人工智能遇见磐创”大佬的整理&#xff0c;感谢原作者&#xff08;本文在原作者的基础上按…

找不到msvcp140dll,无法继续执行代码的详细解决方法

在我们日常使用计算机进行各类工作任务的过程中&#xff0c;时常会遭遇一些突发的技术问题。比如&#xff0c;有时在运行某个重要程序或应用软件时&#xff0c;系统会突然弹出一个令人困扰的错误提示&#xff1a;“电脑提示找不到msvcp140.dll文件&#xff0c;因此无法继续执行…

Mysql基础(二)数据类型和约束

一 数据类型 讲解主要的数据类型,不面面俱到,后续遇到具体问题再查询补充扩展&#xff1a; 知识点的深度和广度以工作为导向 ① int float M : 表示显示宽度&#xff0c;M的取值范围是(0, 255)例如: int(5),当数据宽度小于5位的时候在数字前面需要用字符填满宽度说明&…

双击复制elementui表格某个单元格的数据

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、代码前言 在使用elementui的表格将数据展示出来时,我们想复制该表格区域对应的内容,但因为想复制的列不想太宽而数据太长导致数据省略,无法使用鼠标选择来全部复制到,所以想能不能实现一个双击该内容达到复制效果;…

VSCode 配置 C/C++ 环境

1 安装 VSCode 直接去官网(https://code.visualstudio.com/)下载并安装即可。 2 配置C/C编译环境 方案一 如果是在Windows&#xff0c;需要安装 MingW&#xff0c;可以去官网(https://sourceforge.net/projects/mingw-w64/)下载安装包。 注意安装路径不要出现中文。 打开 w…

声明式事务

文章目录 1.事务分类1.传统方式解决事务2.声明式事务 2.声明式事务案例1.需求分析2.解决方案分析3.数据表创建4.编写GoodsDao.java1.编写配置文件JdbcTemplate_ioc.xml2.单元测试 5.编写GoodsService.java6.配置事务管理器JdbcTemplate_ioc.xml7.进行测试 3.debug事务管理器Dat…

HubSpot流量转化:从访客到客户的转化策略

在当今数字化时代&#xff0c;企业营销获客的关键在于如何将网站访客转化为实际客户。作为HubSpot的合作伙伴&#xff0c;我们深知HubSpot软件在流量转化方面的强大功能。今天运营坛将带领大家深入探讨HubSpot流量转化的核心原理&#xff0c;并介绍如何利用个性化营销策略、构建…

实验2 NFS部署和配置

一、实训目的 1.了解NFS基本概念 2.实现NFS的配置和部署 二、实训准备 1.准备一台能够安装OpenStack的实验用计算机&#xff0c;建议使用VMware虚拟机。 2.该计算机应安装CentOS 7&#xff0c;建议采用CentOS 7.8版本。 3.准备两台虚拟机机&#xff08;客户机和服务器机&…

在React Router 6中使用useRouteLoaderData钩子获取自定义路由信息

在 React Router 6 中怎么像vueRouter一样&#xff0c;可以在配置路由的时候&#xff0c;定义路由的元信息(附加信息)&#xff1f;答案是可以的。稍有些复杂。核心是通过为每个路由定义了一个 loader 函数,用于返回自定义的路由信息&#xff0c;然后通过useRouteLoaderData 钩子…

机器人实验室LAAS-CNRS介绍

一、LAAS-CNRS介绍 1、缩写介绍 同样的&#xff0c;给出英文缩写的全称&#xff0c;以便理解。这里的LAAS&#xff08;Laboratory for Analysis and Architecture of Systems&#xff09;指法国的系统分析与架构实验室&#xff0c;CNRS&#xff08;Centre National de la Rec…

docker容器内ping外网能通,curl不通

排查原因是因为&#xff0c;在服务器上查看ifconfig&#xff0c;显示docker0的mtu是1500&#xff0c;网卡的mtu是1450。 mtu是指在网络通信中能够承载的最大数据包大小。一般情况下&#xff0c;docker的mtu默认为1500字节。 然而&#xff0c;不同的网络设备和网络配置可能会导…

Web3安全性:保护去中心化应用和用户的最佳实践

引言 随着Web3和去中心化应用&#xff08;DApps&#xff09;的迅速发展&#xff0c;我们进入了一个充满无限可能性的新世界。然而&#xff0c;这个数字天堂也伴随着一系列复杂的安全挑战。本文将深入探讨这些挑战&#xff0c;并提供一系列实用的安全建议&#xff0c;帮助你在W…

C++初阶学习第二弹——C++入门(下)

C入门&#xff08;上&#xff09;&#xff1a;C初阶学习第一弹——C入门&#xff08;上&#xff09;-CSDN博客 目录 一、引用 1.1 引用的实质 1.2 引用的用法 二、函数重载 三、内敛函数 四、auto关键字 五、总结 前言&#xff1a; 在上面一章我们已经讲解了C的一些基本…