Pytorch入门实战: 06-VGG-16算法-Pytorch实现人脸识别

第P6周:VGG-16算法-Pytorch实现人脸识别

🍨 本文为🔗365天深度学习训练营 中的学习记录博客

🍖 原作者:K同学啊

🏡 我的环境:

  • 语言环境:Python3.8

  • 编译器:Jupyter Lab

  • 深度学习环境:Pytorch

    • torch==1.12.1+cu113

    • torchvision==0.13.1+cu113

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
​
warnings.filterwarnings("ignore")             #忽略警告信息
​
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

输出:

device(type='cuda')

2. 导入数据

import os,PIL,random,pathlib
​
data_dir = './6-data/'
data_dir = pathlib.Path(data_dir)
​
data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames

输出:

['Angelina Jolie',
 'Brad Pitt',
 'Denzel Washington',
 'Hugh Jackman',
 'Jennifer Lawrence',
 'Johnny Depp',
 'Kate Winslet',
 'Leonardo DiCaprio',
 'Megan Fox',
 'Natalie Portman',
 'Nicole Kidman',
 'Robert Downey Jr',
 'Sandra Bullock',
 'Scarlett Johansson',
 'Tom Cruise',
 'Tom Hanks',
 'Will Smith']

输入:

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
​
total_data = datasets.ImageFolder("./6-data/",transform=train_transforms)
total_data

输出:

Dataset ImageFolder
    Number of datapoints: 1800
    Root location: ./6-data/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

输入:

total_data.class_to_idx

输出:

{'Angelina Jolie': 0,
 'Brad Pitt': 1,
 'Denzel Washington': 2,
 'Hugh Jackman': 3,
 'Jennifer Lawrence': 4,
 'Johnny Depp': 5,
 'Kate Winslet': 6,
 'Leonardo DiCaprio': 7,
 'Megan Fox': 8,
 'Natalie Portman': 9,
 'Nicole Kidman': 10,
 'Robert Downey Jr': 11,
 'Sandra Bullock': 12,
 'Scarlett Johansson': 13,
 'Tom Cruise': 14,
 'Tom Hanks': 15,
 'Will Smith': 16}

3. 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

输出:

(<torch.utils.data.dataset.Subset at 0x2570a8b6680>,
 <torch.utils.data.dataset.Subset at 0x2570a8b67a0>)
batch_size = 32
​
train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

输出:

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

二、调用官方的VGG-16模型

VGG-16(Visual Geometry Group-16)是由牛津大学视觉几何组(Visual Geometry Group)提出的一种深度卷积神经网络架构,用于图像分类和对象识别任务。VGG-16在2014年被提出,是VGG系列中的一种。VGG-16之所以备受关注,是因为它在ImageNet图像识别竞赛中取得了很好的成绩,展示了其在大规模图像识别任务中的有效性。

以下是VGG-16的主要特点:

  1. 深度:VGG-16由16个卷积层和3个全连接层组成,因此具有相对较深的网络结构。这种深度有助于网络学习到更加抽象和复杂的特征。

  2. 卷积层的设计:VGG-16的卷积层全部采用3x3的卷积核和步长为1的卷积操作,同时在卷积层之后都接有ReLU激活函数。这种设计的好处在于,通过堆叠多个较小的卷积核,可以提高网络的非线性建模能力,同时减少了参数数量,从而降低了过拟合的风险。

  3. 池化层:在卷积层之后,VGG-16使用最大池化层来减少特征图的空间尺寸,帮助提取更加显著的特征并减少计算量。

  4. 全连接层:VGG-16在卷积层之后接有3个全连接层,最后一个全连接层输出与类别数相对应的向量,用于进行分类。

VGG-16结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示;

  • 3个全连接层(Fully connected Layer),用classifier表示;

  • 5个池化层(Pool layer)。

VGG-16 包含了16个隐藏层(13个卷积层和3个全连接层),故称为 VGG-16

from torchvision.models import vgg16
​
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
# 加载预训练模型,并且对模型进行微调
model = vgg16(pretrained = True).to(device) # 加载预训练的vgg16模型
​
for param in model.parameters():
    param.requires_grad = False # 冻结模型的参数,这样子在训练的时候只训练最后一层的参数
​
# 修改classifier模块的第6层(即:(6): Linear(in_features=4096, out_features=2, bias=True))
# 注意查看我们下方打印出来的模型
model.classifier._modules['6'] = nn.Linear(4096,len(classeNames)) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
model.to(device)  
model

输出:

Using cuda device
​
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace=True)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace=True)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace=True)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace=True)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace=True)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace=True)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace=True)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace=True)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace=True)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace=True)
    (2): Dropout(p=0.5, inplace=False)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace=True)
    (5): Dropout(p=0.5, inplace=False)
    (6): Linear(in_features=4096, out_features=17, bias=True)
  )
)

三、 训练模型

1. 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)
​
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches
​
    return train_acc, train_loss

2. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
​
    test_acc  /= size
    test_loss /= num_batches
​
    return test_acc, test_loss

3. 设置动态学习率

# def adjust_learning_rate(optimizer, epoch, start_lr):
#     # 每 2 个epoch衰减到原来的 0.98
#     lr = start_lr * (0.92 ** (epoch // 2))
#     for param_group in optimizer.param_groups:
#         param_group['lr'] = lr
​
learn_rate = 1e-4 # 初始学习率
# optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)

调用官方动态学习率接口

与上面方法是等价的

# 调用官方动态学习率接口时使用
lambda1 = lambda epoch: 0.92 ** (epoch // 4)
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

👉 调用官方接口示例:👉

该代码块仅为代码讲解示例,不是整体程序的一部分

# 代码讲解示例
model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)
​
for epoch in range(20):
    for input, target in dataset:
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        optimizer.step()
    scheduler.step()

更多的官方动态学习率设置方式可参考:torch.optim — PyTorch 2.2 documentation

4. 正式训练

model.train()model.eval()训练营往期文章中有详细的介绍。请注意观察我是如何保存最佳模型,与TensorFlow2的保存方式有何异同。

import copy
​
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
epochs     = 40
​
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
​
best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标
​
for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    # adjust_learning_rate(optimizer, epoch, learn_rate)
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
    
# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)
​
print('Done')

输出:

Epoch: 1, Train_acc:6.2%, Train_loss:2.898, Test_acc:5.6%, Test_loss:2.845, Lr:1.00E-04
Epoch: 2, Train_acc:6.8%, Train_loss:2.873, Test_acc:7.8%, Test_loss:2.811, Lr:1.00E-04
Epoch: 3, Train_acc:8.1%, Train_loss:2.840, Test_acc:8.6%, Test_loss:2.811, Lr:1.00E-04
 ......
Epoch:37, Train_acc:20.8%, Train_loss:2.455, Test_acc:16.9%, Test_loss:2.479, Lr:4.72E-05
Epoch:38, Train_acc:18.1%, Train_loss:2.454, Test_acc:16.9%, Test_loss:2.471, Lr:4.72E-05
Epoch:39, Train_acc:20.6%, Train_loss:2.461, Test_acc:16.9%, Test_loss:2.476, Lr:4.72E-05
Epoch:40, Train_acc:20.3%, Train_loss:2.446, Test_acc:17.2%, Test_loss:2.458, Lr:4.34E-05
Done

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
​
epochs_range = range(epochs)
​
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
​
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
​
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2. 指定图片进行预测

from PIL import Image 
​
classes = list(total_data.class_to_idx)
​
def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片
​
    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)
​
    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
    
# 预测训练集中的某张照片
predict_one_image(image_path='./6-data/Angelina Jolie/001_fe3347c0.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)

输出:

预测结果是:Angelina Jolie

3. 模型评估

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss

输出:

(0.17222222222222222, 2.457642674446106)

# 查看是否与我们记录的最高准确率一致
epoch_test_acc

输出:

0.17222222222222222

五、个人总结

巩固了训练基本流程,了解了人脸识别基本原理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/562286.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

​​​​​​​iOS配置隐私清单文件App Privacy Configuration

推送到TestFlight后邮件收到警告信息如下&#xff0c;主要关于新的隐私政策需要补充&#xff1a; Hello, We noticed one or more issues with a recent submission for TestFlight review for the following app: AABBCC Version 10.10.10 Build 10 Although submission for …

堆的概念、堆的向下调整算法、堆的向上调整算法、堆的基本功能实现

目录 堆的介绍 堆的概念 堆的性质 堆的结构 堆的向下调整算法 基本思想&#xff08;以建小堆为例&#xff09; 代码 堆的向上调整算法 基本思想&#xff08;以建小堆为例&#xff09; 代码 堆功能的实现 堆的初始化 HeapInit 销毁堆 HeapDestroy 打印堆 HeapPrint …

Linux配置腾讯云yum源(保姆级教学)

1. 备份原有的 yum 源配置文件 例如&#xff1a; mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 2. 下载腾讯云的 yum 源配置文件 例如&#xff1a; wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.cloud.tencent.com/repo/…

28.组件事件配合v-model使用

组件事件配合v-model使用 如果是用户输入&#xff0c;我们希望在获取数据的同时发送数据配合v-model来使用 <template><div><h3>ComponentA</h3><ComponentB some-event"getHandle" /><p>ComponentA接受的数据&#xff1a;{{ m…

【Linux文件系统开发】认知篇

【Linux文件系统开发】认知篇 文章目录 【Linux文件系统开发】认知篇一、文件系统的概念二、文件系统的种类&#xff08;文件管理系统的方法&#xff09;三、分区四、文件系统目录结构五、虚拟文件系统&#xff08;Virtual File System&#xff09;1.概念2.原因3.作用4.总结 一…

排序 “叁” 之交换排序

目录 1. 基本思想 2.冒泡排序 2.1 基本思想 2.2 代码示例 2.3 冒泡排序的特性总结 3.快速排序 3.1 基本思想 &#x1f335;hoare版本 &#x1f335;挖坑法 ​编辑 &#x1f335;前后指针版本 ​编辑 3.2 快速排序优化 &#x1f33b;三数取中法选key 3.4 快速排序…

HAL STM32 SSI/SPI方式读取MT6701磁编码器获取角度例程

HAL STM32 SSI/SPI方式读取MT6701磁编码器获取角度例程 &#x1f4cd;相关篇《HAL STM32 I2C方式读取MT6701磁编码器获取角度例程》&#x1f4cc;当前最新MT6701数据手册&#xff1a;https://www.magntek.com.cn/upload/MT6701_Rev.1.8.pdf&#x1f4dc;SSI协议读角度&#xff…

flutter 实现表单的封装包含下拉框和输入框

一、表单封装组件实现效果 //表单组件 Widget buildFormWidget(List<InputModel> formList,{required GlobalKey<FormState> formKey}) {return Form(key: formKey,child: Column(children: formList.map((item) {return Column(crossAxisAlignment: CrossAxisAlig…

4月21日Linux运维用户相关的添加,分组,修改权限等shell脚本开发第一天

4月21日运维用户相关的添加&#xff0c;分组&#xff0c;修改权限等shell脚本开发第一天 第一天主要实现前2个功能 ​ 主要卡在了&#xff1a; 正确的写法如下&#xff0c;注意[]中的空格&#xff0c;要求很严格&#xff01;&#xff01;&#xff01; #!/bin/bash # 先查看已…

LIUNX系统编程:文件系统

目录 1.创建文件的本质 1.1目录本身也是一个文件&#xff0c;也有他自己的inode 1.2LINUX创建文件&#xff0c;一定是在目录中创建文件。 2.重谈文件的增删查改 2.1为什目录没有写权限&#xff0c;就不能新建文件。 2.2.文件的查找 3.路径 3.1挂载 3.2如何理解挂载 1.创…

【QT学习】8.qt事件处理机制,事件过滤器,自定义事件

1.qt事件处理机制 事件处理&#xff1a; 当用户移动鼠标的时候 &#xff0c;创建一个 鼠标移动事件对象 然后把这个对象放到 事件队列里面去&#xff0c;事件管理器 从队列中 取出事件&#xff0c;然后 调用其对应的事件处理函数。 多态机制&#xff1a; &#x…

2023年图灵奖颁发给艾维·维格森(Avi Wigderson),浅谈其计算复杂性理论方面做出的重要贡献

Avi Wigderson是一位以色列计算机科学家&#xff0c;他在计算复杂性理论方面做出了重要的贡献&#xff0c;并对现代计算产生了深远的影响。 Wigderson的主要贡献之一是在证明计算复杂性理论中的基本问题的困难性方面。他证明了许多经典问题的困难性&#xff0c;如图论中的图同构…

Day08React——第八天

useEffect 概念&#xff1a;useEffect 是一个 React Hook 函数&#xff0c;用于在React组件中创建不是由事件引起而是由渲染本身引起的操作&#xff0c;比如发送AJAx请求&#xff0c;更改daom等等 需求&#xff1a;在组件渲染完毕后&#xff0c;立刻从服务器获取频道列表数据…

每天五分钟机器学习:神经网络模型参数的选择

本文重点 在深度学习和人工智能的浪潮中,神经网络作为其中的核心力量,发挥着举足轻重的作用。然而,神经网络的性能并非一蹴而就,而是需要经过精心的参数选择和调优。 神经网络由大量的神经元组成,每个神经元之间通过权重进行连接。这些权重,以及神经元的偏置、激活函数…

Adobe Acrobat PDF 2024

Adobe Acrobat PDF 2024正式发布&#xff01;支持Windows和macOS系统&#xff0c;新界面做了轻微调整。 下载地址 Windows客户端&#xff1a;https://www.123pan.com/s/f43eVv-GKZKd.html macOS客户端&#xff1a;https://www.123pan.com/s/f43eVv-PKZKd.html

idea在controller或者service使用ctrl+alt+b进入方法后,如何返回到 进入前的那一层

idea在controller或者service使用ctrlaltb进入方法后&#xff0c;如何返回到进入方法的最外层 解决方案使用 ctrlalt ← /→← /→ 键盘上的左右键盘

数据结构练习-算法与时间复杂度

----------------------------------------------------------------------------------------------------------------------------- 1. 设n是描述问题规模的非负整数&#xff0c;下列程序段的时间复杂度是( )。 x0;while(n>(x1)*(x1)xx1; A.O(logn) B.O(n^(1/2)) C.O(n)…

【周总结】总结下这周的工作、(hashmap)知识巩固等

总结 这周开发任务已经全部结束&#xff0c;主要是在修改一些 jira 问题 需要反思的是&#xff0c;中间改造接口时&#xff0c;数据库表需要新增一个字段&#xff0c;这个 sql 脚本忘记加到 basetable.sql 脚本里面了&#xff0c;这样如果是新建的项目&#xff0c;创建的时候不…

百万级别mysql性能耗时自测

注&#xff1a;实际情况会因建表语句和服务器的配置造成偏差 测试环境 &#xff1a;8核CPU 16G运行内存 建表语句&#xff1a; CREATE TABLE user (id bigint(11) NOT NULL AUTO_INCREMENT,username varchar(255) COLLATE utf8mb4_bin DEFAULT NULL,birthday varchar(255)…

AppWizard的软件开发GUI的使用记录

前言 这个软件是针对于EmWin6.0以上的这个软件在emWin的基础上又封装了一层,也只提供的API函数.基于消息事件为核心&#xff08;个人理解&#xff09;一些组件的之间的交互可以通过软件界面进行配置,比较方便本次是基于模拟器进行测试记录,观察api 按键和文本之间的关联 通过…