Ubuntu 微调训练ChatGLM3大语言模型

Ubuntu 微调训练ChatGLM3大语言模型

LLaMA Factory 的 LoRA 微调提供了 3.7 倍的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。

https://github.com/hiyouga/LLaMA-Factory/tree/main


微调步骤

1.服务器配置

Ubuntu 20.04

8核(vCPU) 32GiB 5Mbps GPU NVIDIA T4 16GB 硬盘 100GiB

CUDA 版本 12.2.2/Driver 版本 535.161.07/CUDNN 版本 8.9.4

查看CUDA版本:nvidia-smi

2.程序和预训练模型文件

程序:

程序保存目录/home/ubuntu/LLaMA-Factory,注意目录权限要可写

git clone https://github.com/hiyouga/LLaMA-Factory.git

预训练模型:

chatglm3-6b

sudo apt-get install git-lfs
#git lfs install
git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git

数据集格式参考:

https://github.com/hiyouga/LLaMA-Factory/blob/main/data/README_zh.md

测试数据集:test_identity.json 需要上传到data目录下

dataset_info.json中需要增加数据集配置

 "test_identity": {
    "file_name": "test_identity.json",
    "file_sha1": "b4520c447cf95fa0dd2191b79aac23b3702ad58c"
  }

test_identity.json 数据格式

[
  {
    "instruction": "你好",
    "input": "",
    "output": "您好,我是 Robert,一个由 天马行空 开发的 AI 助手,很高兴认识您。请问我能为您做些什么?"
  },
  {
    "instruction": "你好",
    "input": "",
    "output": "您好,我是 Robert,一个由 天马行空 打造的人工智能助手,请问有什么可以帮助您的吗?"
  }
]

3.Python环境

方式一、安装conda,创建虚拟环境

mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh

~/miniconda3/bin/conda init bash
~/miniconda3/bin/conda init zsh

创建Python3.10虚拟环境

conda create -n llama_factory python=3.10
conda activate llama_factory

方式二、安装virtualenv,创建虚拟环境(本教程采用这种)

cd /home/ubuntu/LLaMA-Factory
#安装虚拟环境依赖
pip install virtualenv

#*创建虚拟环境
virtualenv venv
#*激活虚拟环境
source venv/bin/activate

#退出虚拟环境
deactivate

4.安装依赖包

进入虚拟环境进行操作

cd /home/ubuntu/LLaMA-Factory
#设置pip源设置为清华大学的镜像,如果已设置就不用设置查看镜像源使用命令pip config get global.index-url
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
#如果版本是24.0就不用更新
python -m pip install --upgrade pip

pip install -r requirements.txt

5.运行测试

#进入虚拟环境后执行
CUDA_VISIBLE_DEVICES=0 python src/train_web.py

http://1.14.74.209:7860/

6.训练参数

微调模型:ChatGLM3-6B-Chat

模型路径:/home/ubuntu/THUDM/chatglm3-6b

训练方式:Supervised Fine-Tuning

数据集:test_identity.json

训练轮数:

50 “loss”: 0.805 效果一般

80 “loss”:0.1893 效果还行

100 “loss”:0.0354 效果很好

120 “loss”:0.0216 效果和100轮差不多,所以训练100轮就可以了

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --do_train True \
    --model_name_or_path /home/ubuntu/THUDM/chatglm3-6b \
    --finetuning_type lora \
    --template chatglm3 \
    --dataset_dir data \
    --dataset test_identity \
    --cutoff_len 1024 \
    --learning_rate 5e-05 \
    --num_train_epochs 80.0 \
    --max_samples 100000 \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 8 \
    --lr_scheduler_type cosine \
    --max_grad_norm 1.0 \
    --logging_steps 5 \
    --save_steps 100 \
    --warmup_steps 0 \
    --optim adamw_torch \
    --report_to none \
    --output_dir saves/ChatGLM3-6B-Chat/lora/train_2024-04-17-17-19-32 \
    --fp16 True \
    --lora_rank 8 \
    --lora_alpha 16 \
    --lora_dropout 0.1 \
    --lora_target query_key_value \
    --plot_loss True

7.训练截图

请添加图片描述
请添加图片描述

8.测试模型

训练完成后,刷新选择适配器,切换到Chat,加载模型进行测试操作,下图测试可知大模型已经完成了自我认知的训练。
在这里插入图片描述

9.导出微调后模型

导出路径:/home/ubuntu/THUDM/chatglm3-6b-robert

10.测试导出的模型

在项目ChatGLM3Test2中更改模型地址来体验微调后的效果。
参考:https://blog.csdn.net/luobowangjing/article/details/137821901
在这里插入图片描述

通过以上的微调,已成功训练出了一个新的大语言模型,完全改变了自我认知。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/556201.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

六边形酷科技特效单页源码

源码介绍 基于canvas画布绘制多个六边形追踪鼠标&#xff0c;科技感的几何图形酷炫动画特效&#xff0c; 单页html源码&#xff0c;可以做网站动态背景&#xff0c;喜欢的朋友可以拿去 效果截图 完整源码 <!doctype html> <html> <head> <meta charset…

OpenHarmony UI开发-ohos-svg

简介 ohos-svg是一个SVG图片的解析器和渲染器&#xff0c;解析SVG图片并渲染到页面上。它支持大部分 SVG 1.1 规范&#xff0c;包括基本形状、路径、文本、样式和渐变,它能够渲染大多数标准的 SVG 图像。ohos-svg的优点是性能好、内存占用低。 效果展示 SVG图片解析并绘制: …

C++ | Leetcode C++题解之第35题搜索插入位置

题目&#xff1a; 题解&#xff1a; class Solution { public:int searchInsert(vector<int>& nums, int target) {int n nums.size();int left 0, right n - 1, ans n;while (left < right) {int mid ((right - left) >> 1) left;if (target < n…

单页面首屏优化,打包后大小减少64M,加载速度快了13.6秒

需求背景 从第三方采购的vue2 ElementUI实现的云管平台&#xff0c;乙方说2011年左右就开始有这个项目了&#xff08;那时候有Vue了吗&#xff0c;思考.jpg&#xff09;。十几年的项目&#xff0c;我何德何能可以担此责任。里面的代码经过多人多年迭代可以用惨不忍睹来形容&a…

面试题:Java中int符号数字的位运算与操作 + 原码、反码、补码之间如何进行转换

题目来源 阿里-淘天-技术1面 问题 -1和4做位运算与操作&#xff0c;结果是多少&#xff1f; 答案 正确答案 4 通过Java代码验证如下&#xff1a; 我的回答 -5&#xff0c;但是-5是错误的答案。 面试的时候&#xff0c;面试官没有告诉我对错。 为什么&#xff1f; 到底…

[生活][杂项] 上班党的注意事项

前言 目前是上班已经接近两年了&#xff0c;目前的状态是&#xff0c;一个人租了一个单间在上班。对于这种情况有以下几点需要注意。 钥匙问题&#xff0c;一定不要陷入钥匙丢失的情况&#xff01;一定不要陷入钥匙丢失的情况&#xff01;一定不要陷入钥匙丢失的情况&#xff…

CSS:filter(滤镜)属性

用途 可以用于img标签&#xff0c;div标签等 图像&#xff0c;背景&#xff0c;边框的调整 常用属性 1. 灰度 grayscale()&#xff0c;默认是0&#xff0c;100%就是黑白 2. blux 给图像设置高斯模糊的程度&#xff0c;radius值设定高斯模糊的程序&#xff0c;表示像素点…

2024年Q1季度冰箱行业线上市场销售数据分析

Q1季度冰箱线上市场表现不如预期。 根据鲸参谋数据显示&#xff0c;2024年1月至3月线上电商平台&#xff08;京东天猫淘宝&#xff09;冰箱累计销量约410万件&#xff0c;环比下降11%&#xff0c;同比下降21%&#xff1b;累计销售额约98亿元&#xff0c;环比下降31%&#xff0…

python爬虫(Selenium案列)第二十四

&#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; &#x1f388;&#x1f388;所属专栏&#xff1a;python爬虫学习&#x1f388;&#x1f388; ✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天…

详细分析Python的继承和多态(附Demo)

目录 前言1. 继承2. 多态 前言 入行多年&#xff0c;对于知识点还会混淆&#xff0c;此处主要做一个详细区分 继承&#xff08;Inheritance&#xff09;: 面向对象编程中的一个重要概念&#xff0c;允许一个类&#xff08;称为子类或派生类&#xff09;继承另一个类&#xff…

工作流JBPM操作API启动实例查询任务

文章目录 8.5 启动实例8.5.1 按照key启动(不加参数)8.5.2 按照key启动(加入参数)8.5.3 启动流程实例的说明 8.6 查询任务8.6.1 查询所有未办理任务8.6.2 查询个人未办理任务8.6.3 查询个人的待办组任务 8.5 启动实例 8.5.1 按照key启动(不加参数) Test // 启动 -- 简单的启…

2024华中杯B题完整思路代码论文解析

2024华中杯B题思路论文汇总 https://www.yuque.com/u42168770/qv6z0d/xpkf6ax8udqq9lt2?singleDoc# 本文针对电子地图服务商利用车辆轨迹数据估计城市路口信号灯周期的问题,提出了一系列数学模型和算法。通过分析车辆行驶轨迹与信号灯的关联性,在不同的约束条件下,实现了对路…

谷歌量化白皮书—PTQ原理

本篇笔记摘抄的原文链接 量化方法 量化粒度 量化模拟 激活层的量化 量化硬件原理 量化范围的设置方法 基于BN的激活层量化范围设置 普通卷积 VS 深度可分离卷积 跨层均衡化 ReLU6比ReLU有什么优势 吸收高偏差、偏差校正、自适应取整 标准PTQ流程 量化模型精度的诊断和性能…

综合大实验

题目&#xff1a; 1、R4为ISP&#xff0c;其上只配置IP地址&#xff1b;R4与其他所直连设备间均使用公有IP&#xff1b; 2、R3-R5、R6、R7为MGRE环境&#xff0c;R3为中心站点&#xff1b; 3、整个OSPF环境IP基于172.16.0.0/16划分&#xff1b;除了R12有两个环回&#xff0c;其…

LeetCode in Python 1338. Reduce Array Size to The Half (数组大小减半)

数组大小减半思路简单&#xff0c;主要是熟悉python中collections.Counter的用法&#xff0c;采用贪心策略即可。 示例&#xff1a; 图1 数组大小减半输入输出示例 代码&#xff1a; class Solution:def minSetSize(self, arr):count Counter(arr)n, ans 0, 0for i, valu…

【ESP32 手机配网教程】

【ESP32 手机配网教程】 1. 前言2. 先决条件2.1 环境配置2.2 所需零件3.3 硬件连接步骤 3. Web热点手动配网3.1. 准备工作3.2. 编译上传程序3.3. 进行手动配网 4. BLE无线配网4.1. 准备工作**4.2. 编译上传程序4.3. 使用手机APP进行无线配网 5. 总结 1. 前言 欢迎使用ESP32进行…

JVM虚拟机(十一)CPU飙高的排查方案与思路

目录 一、排查方案与思路二、总结 一、排查方案与思路 1.一般我们查看 CPU 的使用情况&#xff0c;可以使用 TOP 命令&#xff1a; top执行结果如下所示&#xff0c;这里就可以按照 CPU 使用率进行排序。 2.通过 top 命令查看后&#xff0c;可以查看是哪一个 Java 进程占用 C…

JS中的变量和数据类型及用户输入详解

源码 variate.html<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </he…

详细分析Mysql常用函数(附Demo)

目录 前言1. 聚合函数2. 字符串函数3. 日期函数4. 条件函数5. 数值函数6. 类型转换函数 前言 由于实战中经常运用&#xff0c;索性来一个总结文 创建一个名为 employees 的表&#xff0c;包含以下字段&#xff1a; employee_id&#xff1a;员工ID&#xff0c;整数类型 first…

Redis几种常见的应用方式

1.登录认证 redis最常见的应用就是&#xff0c;登录认证把。再首次登录返回给前端token&#xff0c;把用户名和登录状态缓存到redis一段时间&#xff0c;每次其他请求进来过滤器那这token解析出来的用户名或其他关键的key值&#xff0c;再redis里面查询缓存&#xff0c;有则直…