3D模型处理的多进程并行【Python】

今天我们将讨论如何使用 Python 多进程来处理大量3D数据。 我将讲述一些可能在手册中找到的一般信息,并分享我发现的一些小技巧,例如将 tqdm 与多处理 imap 结合使用以及并行处理存档。

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割

那么我们为什么要诉诸并行计算呢? 使用数据有时会出现与大数据相关的问题。 每次我们遇到 RAM 不适合的数据时,我们都需要逐段处理它。 幸运的是,现代编程语言允许我们生成在多核处理器上完美工作的多个进程(甚至线程)。注意:这并不意味着单核处理器无法处理多处理,这是有关该主题的 Stack Overflow 讨论。

今天我们将尝试计算网格和点云之间的距离这一常见的 3D 计算机视觉任务。 例如,当你需要在所有可用网格中查找定义与给定点云相同的 3D 对象的网格时,可能会遇到此问题。

我们的数据由存储在 .7z 存档中的 .obj 文件组成,这在存储效率方面非常出色。 但是当我们需要访问它的确切部分时,我们应该付出努力。 在这里,我定义了包装 7-zip 存档并提供底层数据接口的类。

from io import BytesIO
import py7zlib

class MeshesArchive(object):
    def __init__(self, archive_path):
        fp = open(archive_path, 'rb')
        self.archive = py7zlib.Archive7z(fp)
        self.archive_path = archive_path
        self.names_list = self.archive.getnames()
        
    def __len__(self):
        return len(self.names_list)
    
    def get(self, name):
        bytes_io = BytesIO(self.archive.getmember(name).read())
        return bytes_io

    def __getitem__(self, idx):
        return self.get(self.names[idx])
    
    def __iter__(self):
        for name in self.names_list:
            yield self.get(name)

这个类几乎不依赖 py7zlib 包,它允许我们在每次调用 get 方法时解压缩数据,并为我们提供存档内的文件数量。 我们还定义了 __iter__ ,它将帮助我们像在可迭代对象上一样在该对象上启动多处理映射。

这个定义为我们提供了迭代存档的可能性,但它是否允许我们并行随机访问内容? 这是一个有趣的问题,我在网上没有找到答案,但如果深入研究 py7zlib 的源代码,我们可以回答它。

在这里,我提供了 pylzma 的代码片段:

class Archive7z(Base):
  def __init__(self, file, password=None):
    # ...
    self.files = {}
    # ...
    for info in files.files:
      # create an instance of ArchiveFile that knows location on disk
      file = ArchiveFile(info, pos, src_pos, folder, self, maxsize=maxsize)
      # ...
      self.files.append(file)
    # ...
    self.files_map.update([(x.filename, x) for x in self.files])
        
  # method that returns an ArchiveFile from files_map dictionary
  def getmember(self, name):
      if isinstance(name, (int, long)):
          try:
              return self.files[name]
          except IndexError:
              return None

      return self.files_map.get(name, None)
    
    
class Archive7z(Base):
  def read(self):
    # ...
    for level, coder in enumerate(self._folder.coders):
      # ...
      # get the decoder and decode the underlying data
      data = getattr(self, decoder)(coder, data, level, num_coders)

    return data

摘自pylzma源码,省略了很多

我相信从上面的要点可以清楚地看出,只要同时多次读取存档,就没有理由被阻止。

接下来我们快速介绍一下什么是网格和点云。 首先是网格,它们是顶点、边和面的集合。 顶点由空间中的 (x,y,z) 坐标定义,并分配有唯一的编号。 边和面相应地是点对和三元组的组,并使用提到的唯一点 ID 进行定义。 通常,当我们谈论“网格”时,我们指的是“三角形网格”,即由三角形组成的表面。 使用 trimesh 库在 Python 中处理网格要容易得多,例如它提供了在内存中加载 .obj 文件的接口。 要在 Jupyter Notebook 中显示 3D 对象并与之交互,可以使用 k3d 库。

因此,通过以下代码片段,我回答了这个问题:“如何使用 k3d 在 jupyter 中绘制 atrimeshobject?”

import trimesh
import k3d

with open("./data/meshes/stanford-bunny.obj") as f:
    bunny_mesh = trimesh.load(f, 'obj')

plot = k3d.plot()
mesh = k3d.mesh(bunny_mesh.vertices, bunny_mesh.faces)
plot += mesh
plot.display()

k3d 显示的斯坦福兔子网格(不幸的是这里没有响应)

其次,点云,它们是表示空间中物体的 3D 点阵列。 许多 3D 扫描仪生成点云作为扫描对象的表示。 为了演示目的,我们可以读取相同的网格并将其顶点显示为点云。

import trimesh
import k3d

with open("./data/meshes/stanford-bunny.obj") as f:
    bunny_mesh = trimesh.load(f, 'obj')
    
plot = k3d.plot()
cloud = k3d.points(bunny_mesh.vertices, point_size=0.0001, shader="flat")
plot += cloud
plot.display()

将顶点绘制为点云

k3d绘制的点云

正如上面提到的,3D 扫描仪为我们提供了点云。 假设我们有一个网格数据库,并且希望在数据库中找到与扫描对象(即点云)对齐的网格。 为了解决这个问题,我们可以提出一种简单的方法。 我们将搜索给定点云的点与存档中的每个网格之间的最大距离。 如果对于某些网格来说,1e-4 的距离较小,我们会认为该网格与点云对齐。

最后,我们来到了多处理部分。 请记住,我们的存档有大量文件可能无法同时放入内存中,我们更喜欢并行处理它们。 为了实现这一点,我们将使用多处理池,它使用 map 或 imap/imap_unordered 方法处理用户定义函数的多次调用。 map 和 imap 之间影响我们的区别在于, map 在发送到工作进程之前将可迭代对象转换为列表。 如果存档太大而无法写入 RAM,则不应将其解压到 Python 列表中。 在另一种情况下,它们的执行速度相似。

[Loading meshes: pool.map w/o manager] Pool of 4 processes elapsed time: 37.213207403818764 sec
[Loading meshes: pool.imap_unordered w/o manager] Pool of 4 processes elapsed time: 37.219303369522095 sec

在上面你可以看到从适合内存的网格存档中进行简单读取的结果。

使用 imap 更进一步。 让我们讨论如何实现找到靠近点云的网格的目标。 这是数据,我们有来自斯坦福模型的 5 个不同的网格。 我们将通过向斯坦福兔子网格的顶点添加噪声来模拟 3D 扫描。

import numpy as np
from numpy.random import default_rng

def normalize_pc(points):
    points = points - points.mean(axis=0)[None, :]
    dists = np.linalg.norm(points, axis=1)
    scaled_points = points / dists.max()
    return scaled_points


def load_bunny_pc(bunny_path):
    STD = 1e-3 
    with open(bunny_path) as f:
        bunny_mesh = load_mesh(f)
    # normalize point cloud 
    scaled_bunny = normalize_pc(bunny_mesh.vertices)
    # add some noise to point cloud
    rng = default_rng()
    noise = rng.normal(0.0, STD, scaled_bunny.shape)
    distorted_bunny = scaled_bunny + noise
    return distorted_bunny

当然,我们之前对下面的点云和网格顶点进行了标准化,以在 3D 立方体中缩放它们。

为了计算点云和网格之间的距离,我们将使用 igl。 为了最终确定,我们需要编写一个将在每个进程及其依赖项中调用的函数。 让我们用下面的片段来总结一下。

import itertools
import time

import numpy as np
from numpy.random import default_rng

import trimesh
import igl
from tqdm import tqdm

from multiprocessing import Pool

def load_mesh(obj_file):
    mesh = trimesh.load(obj_file, 'obj')
    return mesh

def get_max_dist(base_mesh, point_cloud):
    distance_sq, mesh_face_indexes, _ = igl.point_mesh_squared_distance(
        point_cloud,
        base_mesh.vertices,
        base_mesh.faces
    )
    return distance_sq.max()

def load_mesh_get_distance(args):
    obj_file, point_cloud = args[0], args[1]
    mesh = load_mesh(obj_file)
    mesh.vertices = normalize_pc(mesh.vertices)
    max_dist = get_max_dist(mesh, point_cloud)
    return max_dist

def read_meshes_get_distances_pool_imap(archive_path, point_cloud, num_proc, num_iterations):
    # do the meshes processing within a pool
    elapsed_time = []
    for _ in range(num_iterations):
        archive = MeshesArchive(archive_path)
        pool = Pool(num_proc)
        start = time.time()
        result = list(tqdm(pool.imap(
            load_mesh_get_distance,
            zip(archive, itertools.repeat(point_cloud)),
        ), total=len(archive)))
        pool.close()
        pool.join()
        end = time.time()
        elapsed_time.append(end - start)

    print(f'[Process meshes: pool.imap] Pool of {num_proc} processes elapsed time: {np.array(elapsed_time).mean()} sec')
    
    for name, dist in zip(archive.names_list, result):
        print(f"{name} {dist}")
    
    return result
  
 if __name__ == "__main__":
    bunny_path = "./data/meshes/stanford-bunny.obj"
    archive_path = "./data/meshes.7z"
    num_proc = 4
    num_iterations = 3

    point_cloud = load_bunny_pc(bunny_path)
    read_meshes_get_distances_pool_no_manager_imap(archive_path, point_cloud, num_proc, num_iterations)

这里 read_meshes_get_distances_pool_imap 是一个核心函数,其中完成了以下操作:

  • MeshesArchive 和 multiprocessing.Pool 已初始化
  • 应用 tqdm 来监视池进度,并手动完成整个池的分析
  • 执行结果的输出

请注意我们如何将参数传递给 imap,使用 zip(archive, itertools.repeat(point_cloud)) 从 archive 和 point_cloud 创建新的可迭代对象。 这使我们能够将点云数组粘贴到存档的每个条目,从而避免将存档转换为列表。

执行结果如下所示:

100%|####################################################################| 5/5 [00:00<00:00,  5.14it/s]
100%|####################################################################| 5/5 [00:00<00:00,  5.08it/s]
100%|####################################################################| 5/5 [00:00<00:00,  5.18it/s]
[Process meshes: pool.imap w/o manager] Pool of 4 processes elapsed time: 1.0080536206563313 sec
armadillo.obj 0.16176825266293382
beast.obj 0.28608649819198073
cow.obj 0.41653845909820164
spot.obj 0.22739556571296735
stanford-bunny.obj 2.3699851136074263e-05

我们可以发现斯坦福兔子是最接近给定点云的网格。 还可以看出,我们没有使用大量数据,但我们已经证明,即使存档中有大量网格,该解决方案也能发挥作用。

多重处理使数据科学家不仅在 3D 计算机视觉方面而且在机器学习的其他领域都取得了出色的表现。 理解并行执行比循环内执行要快得多,这一点非常重要。 尤其是当算法编写正确时,差异变得非常显着。 大量数据揭示的问题如果没有创造性的方法来利用有限的资源就无法解决。 幸运的是,Python 语言及其丰富的库可以帮助我们数据科学家解决此类问题。


原文链接:3D模型处理的并行化 - BimAnt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/555190.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【蓝桥杯2025备赛】素数判断:从O(n^2)到O(n)学习之路

素数判断:从O( n 2 n^2 n2)到O(n)学习之路 背景:每一个初学计算机的人肯定避免不了碰到素数&#xff0c;素数是什么&#xff0c;怎么判断&#xff1f; 素数的概念不难理解:素数即质数&#xff0c;指的是在大于1的自然数中&#xff0c;除了1和它本身不再有其他因数的自然数。 …

4.18作业

顺序栈&#xff1a; #include "seq_stack.h" seq_p creat_stack() //从堆区申请顺序栈的空间 {seq_p S(seq_p)malloc(sizeof(seq_stack));if(SNULL){printf("空间申请失败\n");return NULL;}bzero(S->data,sizeof(S->data));S->top-1;return S; …

OpenGL:图元

OpenGL的图元 点 GL_POINTS: 将顶点绘制成单个的点 线 GL_LINES:将顶点用于创建线段,2个点成为一条单独的线段。如果顶点个数是奇数,则忽略最后一个。 顶点:v0, v1, v2, v3, … , vn,线段:v0-v1, v2-v3, v4-v5, … , vn-1 - vn GL_LINE_STRIP:将顶点用于创建线段,…

在Linux系统中,禁止有线以太网使用NTP服务器进行时间校准的几种方法

目录标题 方法 1&#xff1a;修改NTP配置以禁止所有同步方法 2&#xff1a;通过网络配置禁用NTP同步方法 3&#xff1a;禁用NTP服务 在Linux系统中&#xff0c;如果想要禁止有线以太网使用NTP服务器进行时间校准&#xff0c;可以通过以下几种方法之一来实现&#xff1a; 方法 …

tcp网络编程——2

1.一个服务器只能有一个客户端连接&#xff08;下面代码&#xff09; ​​​​​​​tcp网络编程&#xff08;基础&#xff09;-CSDN博客 2.一个服务器可以有多个客户端连接&#xff08;多线程&#xff09; server端创建多个线程&#xff0c;每个线程与不同的client端建立连…

代码签名证书的作用及申请

代码签名证书新兴的数字证书的一种&#xff0c;应用范围相对于传统的数字证书而言要稍微少一些。用于验证软件代码的来源和完整性&#xff0c;并提供了一种防止代码被篡改或损坏的机制。常用于软件开发上&#xff0c;代码签名证书由签名证书公钥和私钥证书两部分组成&#xff0…

day05-Elasticsearch01

1.初识elasticsearch 1.1.了解ES 1.1.1.elasticsearch的作用 elasticsearch 是一款非常强大的开源搜索引擎&#xff0c;具备非常多强大功能&#xff0c;可以帮助我们从海量数据中快速找到需要的内容 例如&#xff1a; 在 GitHub 搜索代码在电商网站搜索商品在百度搜索答案在打…

【工位ubuntu的配置】补充

软件 安装桌面图标的问题 登录密码 root的密码为&#xff1a;19980719 按照如下的链接进行配置&#xff1a; https://blog.csdn.net/zhangmingfie/article/details/131102331?spm1001.2101.3001.6650.3&utm_mediumdistribute.pc_relevant.none-task-blog-2%7Edefault%7E…

永久免费次数ChatGPT国内镜像网站【强烈建议收藏】

gctohttps://chat.tomyres.com/#/pages/web/index?n0 觉得分享的网站好用的话&#xff0c;记得点赞收藏哦。

lettcode179.最大数

问题描述&#xff1a; 给定一组非负整数 nums&#xff0c;重新排列每个数的顺序&#xff08;每个数不可拆分&#xff09;使之组成一个最大的整数。 注意&#xff1a;输出结果可能非常大&#xff0c;所以你需要返回一个字符串而不是整数。 示例一&#xff1a; 输入nums [10…

街景图片语义分割后像素类别提取,用于计算各种指标。

语义分割代码见之前博文&#xff08;免费&#xff09;&#xff1a;deeplabv3街景图片语义分割&#xff0c;无需训练模型&#xff0c;看不懂也没有影响&#xff0c;直接使用。cityscapes 语义分割之后&#xff0c;如下图&#xff0c;想要统计各类像素所占的比例&#xff0c;用于…

2024 MathorCup C 题 物流网络分拣中心货量预测及人员排班

一、问题重述 电商物流网络在订单履约中由多个环节组成&#xff0c;图1是一个简化的物流网络示意图。其中&#xff0c;分拣中心作为网络的中间环节&#xff0c;需要将包裹按照不同流向进行分拣并发往下一个场地&#xff0c;最终使包裹到达消费者手中。分拣中心管理效率的提升&…

初识 React:安装和初步使用指南

文章目录 前言一、React 是什么&#xff1f;1.组件化开发2.虚拟 DOM3.单向数据流4.生态系统丰富 二、安装1.准备工作2.下载react 三、探索 React 应用总结 前言 在当今的 Web 开发领域&#xff0c;React 已经成为了一个备受推崇的技术。它的组件化、灵活性和高效性使得它成为了…

MySQL中InnoDB的行级锁

InnoDB 实现了以下两种类型的行锁。 共享锁&#xff08;S&#xff09;&#xff1a;又称为读锁&#xff0c;简称S锁&#xff0c;共享锁就是多个事务对于同一数据可以共享一把锁&#xff0c;都能访问到数据&#xff0c;但是只能读不能修改。 排他锁&#xff08;X&#xff09;&am…

时间同步服务项目练习

一.配置server主机要求如下&#xff1a; 1.server主机的主机名称为 ntp_server.example.com 2.server主机的IP为&#xff1a; 172.25.254.100 3.server主机的时间为1984-11-11 11&#xff1a;11&#xff1a;11 4.配置server主机的时间同步服务要求可以被所有人使用 更改主机名…

Android开发基础:Activity之间的跳转 向下一个Activity传递数据 给上一个Activity返回数据

目录 一&#xff0c;使用Intent在Activity之间跳转 1.显示使用Intent 2.隐式使用Intent 二&#xff0c;携带数据的跳转 1.Bundle 三&#xff0c;返回数据给上一个Activity 1.registerForActivityResult 一&#xff0c;使用Intent在Activity之间跳转 一个Android应用中包…

APEX开发过程中需要注意的小细节5.5

oracle保留小数点后两位的函数 在日常开发中经常用到百分比做数据对比&#xff0c;但是有可能得到的数据是一个多位小数&#xff0c;结果如下所示&#xff1a; 如果想截取部分小数如保留小数点后两位可以怎么做呢&#xff1f; 在Oracle中&#xff0c;可以使用ROUND函数来四舍…

请警惕,这10本期刊已被SCI剔除,部分涉嫌灌水

科睿唯安于4月15日更新了SCIE、SSCI、AHCI、ESCI四大数据库最新收录期刊目录。 2024年第一版——2024年1月24日更新 2024年第二版——2024年2月19日更新 2024年第三版——2024年3月18日更新 2024年第四版——2024年4月15日更新 本次目录中共收录期刊23368本。 【SCIE数据…

档案集中管理的痛点怎么解决?

档案集中管理可能面临的痛点包括以下几个方面&#xff1a; 1. 档案分类和整理困难&#xff1a;档案集中管理会面临大量档案的分类和整理工作&#xff0c;可能导致混乱和困难。 解决方法&#xff1a; - 建立统一的档案分类规范和流程&#xff0c;确保所有档案都能按照规定的方式…

《QT实用小工具·二十九》托盘图标控件

1、概述 源码放在文章末尾 托盘图标控件 可设置托盘图标对应所属主窗体。 可设置托盘图标。 可设置提示信息。 自带右键菜单。 下面是demo演示&#xff1a; 项目部分代码如下&#xff1a; #ifndef TRAYICON_H #define TRAYICON_H/*** 托盘图标控件* 1. 可设置托盘图标…