AI大模型探索之路-应用篇14:认识国产开源大模型GLM

目录

前言

一、国产主流大模型概览

1. 国内主流大模型清单

2. 主流大模型综合指数

3. 大语言模型评测榜单

二、GLM大模型介绍

三、GLM大模型发展历程

四、GLM家族之基座模型GLM-130B

五、GLM家族之ChatGLM3

六、GLM家族之WebGLM

七、GLM家族之CogVLM

1. CogVLM

2. CogAgent

八、GLM家族之CodeGeeX

1. CodeGeeX

2. CodeGeeX2

九、GLM家族之AgentBench和AgentTuning

总结


前言

在人工智能的浩瀚宇宙中,开源大模型如同璀璨星辰,引领着技术创新与应用探索的方向。国际领域的OpenAI无疑闪耀着夺目的光芒,但国内厂商亦步亦趋,逐渐展露头角。今天,我们将聚焦于国内主流的大模型,探寻它们的技术脉络与应用潜力,并特别解析智谱AI研发的GLM大模型系列,见证中国在全球AI舞台上的坚实步伐。

一、国产主流大模型概览

在国际大模型的光环之下,国内技术企业凭借持续的研发投入与创新精神,孕育出一系列具有自主知识产权的大模型。它们在多语言处理、自然语言理解等领域展现出强大的潜能

1. 国内主流大模型清单

由于篇幅有限仅列了部分国内主流大模型

1)智谱清言(ChatGLM) - 智谱AI:智谱AI推出的对话大模型,优化了中文问答和对话能力。

2)通义千问:阿里巴巴推出的大模型,集成了其在自然语言处理等领域的技术积累。

3)讯飞星火:科大讯飞公司推出的大模型,展现了良好的搜索能力和上下文理解能力。

4)文心一言:百度的大模型,利用百度的搜索数据和知识图谱作为支撑。

5)盘古大模型:华为自主研发的AI大模型系列,涵盖了NLP、CV、多模态等多个领域。

6)百川大模型 - 百川智能:百川智能推出的大模型产品,致力于提供人工智能解决方案。

7)豆包 - 字节跳动:字节跳动推出的大模型,特点是拥有丰富的中文数据和强大的技术实力。

8)腾讯AI Lab通用大模型 :腾讯AI Lab推出的通用大模型,致力于提升自然语言理解和生成。

虽然国产大模型在中文处理等方面取得了一定的进展,部分模型在中文主观评测中接近国际顶尖水平,但整体上要赶超GPT-4 Turbo等国际先进的大模型,还需要更多的努力和投入;希望未来能有更大的提升,以及各个场景与领域的应用。

2. 主流大模型综合指数

数据来源:《人工智能大模型体验报告3.0》

3. 大语言模型评测榜单

大语言模型排行榜

大模型选择方向支持中文、开源的、可商用的、性能好、低成本部署

===================== 智谱AI的GLM大模型 =====================

二、GLM大模型介绍

GLM大模型作为智谱AI的杰出代表作,以其卓越的中文处理能力、开源特性及对多种芯片的支持,成为国内外广泛关注的焦点。其基于Transformer架构的自主研发核心,展现了智谱AI在算法创新上的深厚实力。此外,GLM大模型不仅是文本处理的高手,还能解读图像等复合数据,拓展了AI的应用边界。而其所在的产品矩阵,如ALL Tools、CogVLM3和CodeGeeX3等,共同构成了一个全面的大模型生态系统。

1)中文处理能力强:GLM大模型针对中文问答和对话进行了优化,表现出色,尤其在中文领域可以比肩GPT-4(支持中英文)。
2)开源特性:作为国产自研的大模型,GLM大模型的开源有助于推动技术共享和创新。
3)底层核心:非GPT,而是基于Transformer架构自研的的自编码模型
4)芯片支持:除了支持NVIDIA,还支持Hygon DCU、Ascend910、Sunway等国产芯片
5)支持Int4: 支持INT4部署(量化处理),相比于GPT的INT8,更节省资源
6)技术成果积累:GLM大模型是智谱AI(由清华大学计算机系知识工程实验室的技术转化而来)多年技术积累的成果。
7)多模态能力:GLM不仅处理文本,还能理解图像等复合数据,有助于实现更丰富的应用场景。
8)全家桶产品:GLM大模型所在的产品矩阵包括ALL Tools、多模态大模型CogVLM3、代码大模型CodeGeeX3等,形成了一个全面的大模型产品体系(对标Open AI)

三、GLM大模型发展历程

2021年9月:智谱AI设计了GLM算法,并发布了拥有自主知识产权的开源百亿大模型GLM-10B。
2022年8月:智谱AI发布了高精度千亿大模型GLM-130B,并进行了开源,该模型的效果与GPT-3 175B相当,受到全球70余个国家1000余个研究机构的使用需求。
2022年11月:发布编程大模型CodeGeex,对标OpenAICodeX编程大模型。
2023年7月25日:发布CodeGeex2, 全面超越LAMMA2编程能力;
2022年:推出P-tuningv2,经过数年迭代,是目前最为通用的开源微调框架之一;
2023年9月24日:推出CogVLM多模态大模型,在多模态权威学术榜综合成绩排名第一,对标GPT-4v;
2023年10月15日:推出AgentBench,LLMAgent能力评估模型;当日同时推出AgentTuning,用于增强LLM ;Agent性能对标微软AutoGen
2024年1月16日:智谱AI推出了新一代基座大模型GLM-4,这标志着其在大模型研发上的又一重要里程碑。

四、GLM家族之基座模型GLM-130B

GLM-130B是一个开放的双语(英文和中文)双向密集模型,具有1300亿个参数,使用通用语言模型(GLM)的算法进行预训练。有1300亿个参数,它旨在支持在单个 A100 (40G * 8) 或 V100 (32G * 8) 服务器上使用 130B 参数的推理任务。通过 INT4 量化,硬件要求可以进一步降低到具有 4 * RTX 3090 (24G) 的单个服务器,几乎没有性能下降。截至 2022 年 7 月 3 日,GLM-130B 已在超过 4000 亿个文本令牌(中英文各 200B)上进行了训练,支持国产芯片,并具有以下独特功能:

1)双语:支持英文和中文。
2)性能(EN):在 LAMBADA 上优于 GPT-3 175B (+4.0%)、OPT-175B (+5.5%) 和 BLOOM-176B (+13.0%),在 MMLU 上略优于 GPT-3 175B (+0.9%)。
3)性能(CN):在 7 个零样本 CLUE 数据集 (+24.26%) 和 5 个零样本 FewCLUE 数据集 (+12.75%) 上明显优于 ERNIE TITAN 3.0 260B。
4)快速推理:支持使用单个 A100 服务器在 SAT 和 FasterTransformer 上进行快速推理(速度提高 2.5 倍)。
5)可重复性:所有结果(30+ 个任务)都可以通过开源代码和模型检查点轻松重现。
6)跨平台:支持 NVIDIA、Hygon DCU、Ascend 910 和 Sunway 的训练和推理(即将发布)。

=====================================GLM-4============================

新一代基座大模型GLM-4,整体性能相比GLM3全面提升60%,逼近GPT-4;支持更长上下文;更强的多模态;支持更快推理速度,更多并发,大大降低推理成本;同时GLM-4增强了智能体能力。

1)基础能力(英文):GLM-4 在 MMLU、GSM8K、MATH、BBH、HellaSwag、HumanEval等数据集上,分别达到GPT-4 94%、95%、91%、99%、90%、100%的水平。
2)指令跟随能力:GLM-4在IFEval的prompt级别上中、英分别达到GPT-4的88%、85%的水平,在Instruction级别上中、英分别达到GPT-4的90%、89%的水平。
3)对齐能力:GLM-4在中文对齐能力上整体超过GPT-4。
4)长文本能力:我们在LongBench(128K)测试集上对多个模型进行评测,GLM-4性能超过 Claude 2.1;在「大海捞针」(128K)实验中,GLM-4的测试结果为 128K以内全绿,做到100%精准召回。
5)多模态-文生图:CogView3在文生图多个评测指标上,相比DALLE3 约在 91.4% ~99.3%的水平之间。

五、GLM家族之ChatGLM3

ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上;支持Prompt、Function Call、Agent (相当于开发时和OpenAI相关的实践相同)

1)更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,* ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能*。
2)更完整的功能支持: ChatGLM3-6B 采用了全新设计的 Prompt 格式 ,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。
3)更全面的开源序列: 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM3-6B-Base 、长文本对话模型 ChatGLM3-6B-32K 和进一步强化了对于长文本理解能力的 ChatGLM3-6B-128K。以上所有权重对学术研究完全开放 ,在填写 问卷 进行登记后亦允许免费商业使用。

六、GLM家族之WebGLM

WebGLM 旨在使用 10 亿参数的通用语言模型(GLM)提供一种高效且低成本的网络增强问答系统。它旨在通过将网络搜索和召回功能集成到预训练的语言模型中以进行实际应用的部署。

1)大模型增强检索器:增强了相关网络内容的检索能力,以更好地准确回答问题。
2)自举生成器:利用 GLM 的能力为问题生成回复,提供详细的答案。
3)基于人类偏好的打分器:通过优先考虑人类偏好来评估生成回复的质量,确保系统能够产生有用和吸引人的内容。

七、GLM家族之CogVLM

1. CogVLM

CogVLM 是一个强大的开源视觉语言模型(VLM)。CogVLM-17B拥有100亿的视觉参数和70亿的语言参数,支持490*490分辨率的图像理解和多轮对话。

CogVLM有时比GPT-4V(ision)捕获更详细的内容:在上图中,CogVLM能够准确识别出4个房子(3个完整可见,1个只有放大才能看到);作为对比,GPT-4V仅能识别出其中的3个。

2. CogAgent

CogAgent是一个基于CogVLM改进的开源视觉语言模型。CogAgent-18B拥有110亿的视觉参数和70亿的语言参数。除了CogVLM已有的所有功能(视觉多轮对话,视觉定位)之外,CogAgent:
1)支持更高分辨率的视觉输入和对话式问答。它支持超高分辨率的图像输入,达到1120x1120。
2)拥有视觉Agent的能力,能够在任何图形用户界面截图上,为任何给定任务返回一个计划,下一步行动,以及带有坐标的特定操作。
3)增强了与图形用户界面相关的问答能力,使其能够处理关于任何图形用户界面截图的问题,例如网页、PC应用、移动应用等。
4)通过改进预训练和微调,提高了OCR相关任务的能力。

八、GLM家族之CodeGeeX

1. CodeGeeX

CodeGeeX模型,130亿参数,支持20多种编程语言,具备代码生成、续写、翻译等能力;开发了支持VSCode、IntelliJIDEA、PyCharm、GoLand、WebStorm、AndroidStudio等IDE的CodeGeeX插件。

2. CodeGeeX2

CodeGeeX2是多语言代码生成模型 CodeGeeX (KDD’23) 的第二代模型。不同于一代 CodeGeeX(完全在国产华为昇腾芯片平台训练) ,CodeGeeX2 是基于 ChatGLM2 架构加入代码预训练实现,得益于 ChatGLM2 的更优性能,CodeGeeX2 在多项指标上取得性能提升(+107% > CodeGeeX;仅60亿参数即超过150亿参数的 StarCoder-15B 近10%),更多特性包括:

1)更强大的代码能力:基于 ChatGLM2-6B 基座语言模型,CodeGeeX2-6B 进一步经过了 600B 代码数据预训练,相比一代模型,在代码能力上全面提升,HumanEval-X 评测集的六种编程语言均大幅提升 (Python +57%, C++ +71%, Java +54%, JavaScript +83%, Go +56%, Rust +321%),在Python上达到 35.9% 的 Pass@1 一次通过率,超越规模更大的 StarCoder-15B。

2)更优秀的模型特性:继承 ChatGLM2-6B 模型特性,CodeGeeX2-6B 更好支持中英文输入,支持最大 8192 序列长度,推理速度较一代 CodeGeeX-13B 大幅提升,量化后仅需6GB显存即可运行,支持轻量级本地化部署。

3)更全面的AI编程助手:CodeGeeX插件(VS Code, Jetbrains)后端升级,支持超过100种编程语言,新增上下文补全、跨文件补全等实用功能。结合 Ask CodeGeeX 交互式AI编程助手,支持中英文对话解决各种编程问题,包括且不限于代码解释、代码翻译、代码纠错、文档生成等,帮助程序员更高效开发。

4)更开放的协议:CodeGeeX2-6B 权重对学术研究完全开放,填写登记表申请商业使用。

九、GLM家族之AgentBench和AgentTuning

AgentBench是第一个系统性的基准测试,用于评估LLM作为智能体在各种真实世界挑战和8个不同环境中的表现。AgentTuning技术能够激活模型的智能规划和执行能力


总结

GLM大模型系列不仅代表了智谱AI的技术成果,也反映了中国在AI领域能与国际巨头并肩前行的决心与实力。随着技术的不断迭代与应用的深化,我们有理由相信,国产大模型将在世界AI的舞台上发挥更加重要的作用。

文章若有瑕疵,恳请不吝赐教;若有所触动或助益,还望各位老铁多多关注并给予支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/550611.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2024五一杯数学建模A题思路分析

文章目录 1 赛题思路2 比赛日期和时间3 组织机构4 建模常见问题类型4.1 分类问题4.2 优化问题4.3 预测问题4.4 评价问题 5 建模资料 1 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 2 比赛日期和时间 报名截止时间:2024…

P9241 [蓝桥杯 2023 省 B] 飞机降落

原题链接:[蓝桥杯 2023 省 B] 飞机降落 - 洛谷 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 dfs全排列的变形题。 因为最后问飞机是否降落,并且一架飞机降落完毕时另一架飞机才能降落。所以我们设置dfs的两个变量cnt为安全…

解决EasyPoi导入Excel获取不到第一列的问题

文章目录 1. 复现错误2. 分析错误2.1 导入的代码2.2 DictExcel实体类2.2 表头和标题 3. 解决问题 1. 复现错误 使用EasyPoi导入数据时,Excel表格如下图: 但在导入时,出现如下错误: name为英文名称,在第一列&#xff0c…

Java代码基础算法练习-水仙花数-2024.04.17

任务描述: 水仙花数也被称为超完全数字不变数、自恋数、自幂数、阿姆斯壮数或阿姆斯特朗数。水仙花数是 指一个 3 位数,它的每个位上的数字的3次幂之和等于它本身。 例如: 1的3次方 5的3次方 …

计算机网络的七层模型

序 OSl(Open System Interconnect),即开放式系统互联。一般都叫OSI参考模型。在网络编程中最重要的模型就是OSI七层网络模型和TCP/IP四层网络模型 一、OSI七层参考模型以及功能概述 二、各层的具体职能以及实际应用 1.应用层: OSI参考模型中最接近用…

最新的网易星球GEC挖矿系统修复版 章鱼星球挖矿系统源码 区块链虚拟币交易源码 基于ThinkPHP5开发

区块链系统介绍 2018.12.10更新增加聚合数据短信接口 2018.11.19更新增加短信宝接口 2018.08.17修复Linux系统搭建验证码不显示问题 2018.08.09修复后台某处溢出数据库账号密码BUG 2018.08.06修复票卷BUG 源码介绍: 区块链系统中用户共九个等级,依…

【Git】生成patch和应用patch

生成patch 将本地所有修改打成补丁 git diff > /tmp/xxx.patch将本地对某个文件的修改打成补丁 git diff test/1.txt > /tmp/1.patch将某一次提交的修改内容打成补丁 -1表示只为单个提交创建patch,-o表示输出patch的文件夹路径,默认是用提交的…

轻松查询车辆信息的全能接口

在当今社会,车辆已经成为人们出行的重要工具之一。当我们在二手车买卖、事故处理或者其他需要查询车辆详细信息的情况下,我们通常需要耗费大量时间和精力去收集相关的资料。幸好,有了车辆信息查询接口,我们可以通过输入车架号vin来…

20240416,对象初始化和清理,对象模型和THIS指针

哈哈哈乌龟越狱了 目录 2.5 深拷贝&浅拷贝 2.6 初始化列表 2.7 类对象作为类成员 2.8 静态成员 2.9 成员变量和成员函数分开存储 2.10 THIS指针的用途 2.11 空指针访问成员函数 2.12 COSNT修饰成员函数 2.5 深拷贝&浅拷贝 浅拷贝:简单的赋值拷贝…

leetcode-合并两个有序链表

目录 题目 图解 方法一 方法二 代码(解析在注释中) 方法一 ​编辑方法二 题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1…

第11章 数据仓库和数据智能知识点梳理

第11章 数据仓库和数据智能知识点梳理(附带页码) ◼ 数据仓库(Data Warehouse,DW):始于 20 世纪 80 年代,发展于 20 世纪 90 年代,后与商务智能(Business Inteligence,BI…

MAC上如何将某个目录制作成iso格式磁盘文件,iso文件本质是什么?以及挂载到ParallelDesktop中?(hdiutil makehybrid )

背景 ParallelsDesktop没有安装ParallelsTools的无法共享目录,可以通过ParallelsDesktop提供CD磁盘的方式共享进去 命令 # 准备文档 mkdir mytestdir cp xxx mytestdir# 生成iso hdiutil makehybrid -o output.iso mytestdir -iso -joliethdiutil是MAC提供的磁盘…

使用FastDDS编译IDL文件

1.安装FastDDS环境 Ubuntu22.04 1.1安装依赖的软件 sudo apt-get update //基础工具安装 sudo apt install cmake g python3-pip wget git //Asio 是一个用于网络和低级 I/O 编程的跨平台C库,它提供了一致的 异步模型。 TinyXML2是一个简单,小巧&…

DFS算法系列题 全排列II

DFS算法系列题 – 全排列II DFS精选题- > 这次我们挑战的对象是: 全排列II 题目链接:47. 全排列 II - 力扣(LeetCode) 这道题和我们之前做的全排列不同的点在于这道题的题目包含了重复的数字,要求我们返回不重复…

Transformer的Decoder的输入输出都是什么

目录 1 疑问:Transformer的Decoder的输入输出都是什么 2 推理时Transformer的Decoder的输入输出 2.1 推理过程中的Decoder输入输出 2.2 整体右移一位 3 训练时Decoder的输入 参考文献: 1 疑问:Transformer的Decoder的输入输出都是什么 …

SQLite数据库中JSON 函数和运算符

返回:SQLite—系列文章目录 上一篇:维护SQLite的私有分支(二十六) 下一篇:SQLite—系列文章目录 ​ 1. 概述 默认情况下,SQLite 支持 29 个函数和 2 个运算符 处理 JSON 值。还有两个表值函数可用于分解 JSON…

最优算法100例之52-合并两个单调递增的单链表

专栏主页:计算机专业基础知识总结(适用于期末复习考研刷题求职面试)系列文章https://blog.csdn.net/seeker1994/category_12585732.html 题目描述 合并两个单调递增的单链表 题解报告 解法1:采用尾插法首先确定一个头结点出来&a…

【Java EE】关于Spring MVC 响应

文章目录 🎍返回静态页面🌲RestController 与 Controller 的关联和区别🌴返回数据 ResponseBody🎋返回HTML代码片段🍃返回JSON🍀设置状态码🎄设置Header🌸设置Content-Type&#x1f…

【halcon】C# halcon 内存暴增 续,找到一个解决方案

这里写自定义目录标题 背景释放临时缓存具体的使用感受背景 在之前的文章《【halcon】C# halcon 内存暴增 》中我们提到了一些会导致内存暴增的原因。 其中一个就是使用了计算复杂的算子,且图片很大时,此时内存就会暴增,而且内存无法被释放。 这次,我在做一个项目时,用到…

一个开源的全自动视频生成软件MoneyPrinterTurbo

只需提供一个视频 主题 或 关键词 ,就可以全自动生成视频文案、视频素材、视频字幕、视频背景音乐,然后合成一个高清的短视频。 一:功能特性 完整的 MVC架构,代码 结构清晰,易于维护,支持 API 和 Web界面…