偏微分方程算法之混合边界差分

目录

一、研究对象

二、差分格式

2.1 向前欧拉格式

1. 中心差商

1.1.1 理论推导

1.1.2 算例实现

2. x=0处向前差商,x=1处向后差商

1.2.1 理论推导

1.2.2 算例实现

2.2 Crank-Nicolson格式

2.2.1 理论推导

2.2.2 算例实现


一、研究对象

        这里我们以混合边界(导数边界)条件下的抛物型方程初边值问题:

\left\{\begin{matrix} \frac{\partial u}{\partial t}-a\frac{\partial^{2}}{\partial x^{2}}=f(x,t), \space\space 0<x<1,\space\space 0<t \leqslant T,\\ u(x,0)=\varphi(x),\space\space\space\space 0 \leqslant x \leqslant 1, \space\space\space\space(1)\\ \frac{\partial u}{\partial x}(0,t)-\lambda u(0,t)=\alpha(t), \frac{\partial u}{\partial x}(1,t)+\mu u(1,t)=\beta(t),0<t\leqslant T \end{matrix}\right.

其中,\lambda \geqslant 0,\mu \geqslant 0且当\lambda,\mu同时为0时公式(1)中的边界条件是诺依曼条件。

二、差分格式

        这里我们用向前欧拉法显格式和Crank-Nicolson格式进行差分格式建立。

2.1 向前欧拉格式

1. 中心差商

1.1.1 理论推导

        网格剖分参照偏微分方程算法之向前欧拉法(Forward Euler)-CSDN博客。在节点(x_{i},t_{k})处得到节点离散方程:

\left\{\begin{matrix} \frac{\partial u}{\partial t}|_{({x_{i},t_{k}})}-a\frac{\partial^{2}u}{\partial x^{2}}|_{({x_{i},t_{k}})}=f(x_{i},t_{k}),\\ u(x_{i},t_{0})=\varphi(x_{i}),\space\space\space\space (2)\\ \frac{\partial u}{\partial x}(x_{0},t_{k})-\lambda u(x_{0},t_{k})=\alpha(t_{k}),\frac{\partial u}{\partial x}(x_{m},t_{k})+\mu u(x_{m},t_{k})=\beta(t_{k}) \end{matrix}\right.

        利用一阶向前差商代替微商,可得:

\frac{\partial u}{\partial t}|_{(x_{i},t_{k})}\approx \frac{u(x_{i},t_{k+1})-u(x_{i},t_{k})}{\tau}

\frac{\partial^{2}u}{\partial x^{2}}|_{(x_{i},t_{k})}\approx \frac{u(x_{i+1},t_{k})-2u(x_{i},t_{k})+u(x_{i-1},t_{k})}{h^{2}}

        边界条件采用中心差商

\frac{\partial u}{\partial x}|_{(x_{0},t_{k})}\approx \frac{u(x_{1},t_{k})-u(x_{-1},t_{k})}{2h},\frac{\partial u}{\partial x}|_{(x_{m},t_{k})}\approx \frac{u(x_{m+1},t_{k})-u(x_{m-1},t_{k})}{2h}

其中u(x_{-1},t_{k}),u(x_{m+1},t_{k})中x变量都已经越界,属于虚拟数值,将在下文单独处理。将上面各式带入公式(2)中,将数值解代替精确解并忽略高阶项,可得到离散差分格式:

\left\{\begin{matrix} \frac{u^{k+1}_{i}-u^{k}_{i}}{\tau}-a\frac{u^{k}_{i+1}-2u^{k}_{i}+u^{k}_{i-1}}{h^{2}}=f(x_{i},t_{k}),\space\space 1\leqslant i \leqslant m-1,\space\space 0 \leqslant k \leqslant n-1,\\ u^{0}_{i}=\varphi(x_{i}),\space\space\space\space(3) \\ \frac{u^{k}_{1}-u^{k}_{-1}}{2h}-\lambda u^{k}_{0}=\alpha(t_k),\frac{u^{k}_{m+1}-u^{k}_{m-1}}{2h}+\mu u^{k}_{m}=\beta(t_k), 1 \leqslant k \leqslant n \end{matrix}\right.

        公式(3)中第1式可以写成:

u^{k+1}_{i}-u^{k}_{i}-r(u^{k}_{i+1}-2u^{k}_{i}+u^{k}_{i-1})=\tau f(x_{i},t_{k}),\space\space 1 \leqslant i \leqslant m-1,0 \leqslant k \leqslant n-1 \space\space\space\space (4)

其中r=\frac{a\tau}{h^{2}}。为处理越界问题,设公式(4)对i=0和i=1都成立,即:

u^{k+1}_{0}-u^{k}_{0}-r(u^{k}_{1}-2u^{k}_{0}+u^{k}_{-1})=\tau f(x_{0},t_{k}),u^{k+1}_{m}-u^{k}_{m}-r(u^{k}_{m+1}-2u^{k}_{m}+u^{k}_{m-1})=\tau f(x_{m},t_{k}) \space\space\space\space(5)

        将上式与公式(3)中的第3式以及u^{k}_{-1}=u^{k}_{1}-2\lambda h u^{k}_{0}-2h\alpha(t_{k})u^{k}_{m+1}=u^{k}_{m-1}-2\mu h u^{k}_{m}+2h\beta(t_{k})联立,可得:

\left\{\begin{matrix} u^{k+1}_{0}=(1-2r-2r\lambda h)u^{k}_{0}+2ru^{k}_{1}-2rh\alpha(t_{k})+\tau f(x_{0},t_{k}), \space\space (6)\\ u^{k+1}_{m}=2ru^{k}_{m-1}+(1-2r-2r\mu h)u^{k}_{m}+2rh\beta(t_{k})+\tau f(x_{m},t_{k}) \end{matrix}\right.

        联合公式(5)、(6)可得:

\left\{\begin{matrix} u^{k+1}_{0}=(1-2r-2r\lambda h)u^{k}_{0}+2ru^{k}_{1}-2rh\alpha(t_{k})+\tau f(x_{0},t_{k}) , [1]\\ u^{k+1}_{i}=ru^{k}_{i-1}+(1-2r)u^{k}_{i}+ru^{k}_{i+1}+\tau f(x_{i},t_{k}),1\leqslant i\leqslant m-1,0\leqslant k\leqslant n-1,[2]\\ u^{k+1}_{m}=2ru^{k}_{m-1}+(1-2r-2r\mu h)u^{k}_{m}+2rh\beta(t_{k})+\tau f(x_{m},t_{k}),[3]\\ u^{0}_{i}=\varphi(x_{i}),0\leqslant i\leqslant, m[4] \end{matrix}\right.

1.1.2 算例实现

        抛物型初边值问题:

\left\{\begin{matrix} \frac{\partial u}{\partial t}=\frac{\partial ^{2}u}{\partial x^{2}},\space\space 0<x<1,0<t \leqslant 1,\\ u(x,0)=1,\space\space\space\space 0\leqslant x\leqslant 1,\\ \frac{\partial u}{\partial x}(0,t)=u(0,t),\frac{\partial u}{\partial x}(1,t)=-u(1,t),0<t \leqslant 1, \end{matrix}\right.

已知精确解为u(x,t)=4\sum_{n=1}^{\infty}[\frac{sec\alpha_{n}}{(3+4\alpha^{2}_{n})}e^{-4\alpha^{2}_{n}t}cos2\alpha_{n}(x-\frac{1}{2})],其中\alpha_{n}是方程\alpha tan\alpha=\frac{1}{2}的根。取h=0.1,\tau=0.0025

代码如下:


#include<cmath>
#include<stdio.h>
#include<stdlib.h>


int main(int argc, char* argv[])
{
        int m, n, i, k;
        double h, tau, a,lambda,mu,r;
        double *x, *t,**u;
        double f(double x, double t);
        double phi(double x);
        double alpha(double t);
        double beta(double t);

        m=10;
        n=400;
        h=1.0/m;
        tau=1.0/n;
        a=1.0;
        lambda=1.0;
        mu=1.0;
        r=a*tau/(h*h);
        printf("r=%.4f.\n", r);

        x=(double *)malloc(sizeof(double)*(m+1));
        for(i=0;i<=m;i++)
                x[i]=i*h;

        t=(double *)malloc(sizeof(double)*(n+1));
        for(k=0;k<=n;k++)
                t[k]=k*tau;

        u=(double **)malloc(sizeof(double *)*(m+1));
        for(i=0;i<=m;i++)
                u[i]=(double *)malloc(sizeof(double)*(n+1));

        for(i=0;i<=m;i++)
                u[i][0]=phi(x[i]);

        for(k=0;k<n;k++)
        {
                u[0][k+1]=(1.0-2*r-2*r*lambda*h)*u[0][k]+2*r*u[1][k]-2*r*h*alpha(t[k])+tau*f(x[0], t[k]);
                for(i=1;i<m;i++)
                        u[i][k+1]=r*u[i-1][k]+(1-2*r)*u[i][k]+r*u[i+1][k]+tau*f(x[i],t[k]);
                u[m][k+1]=2*r*u[m-1][k]+(1.0-2*r-2*r*mu*h)*u[m][k]+2*r*h*beta(t[k])+tau*f(x[m],t[k]);
        }

        printf("t/x     0          0.1       0.2       0.3       0.4       0.5\n");

        for(k=1;k<=8;k++)
        {
                printf("%.4f  ", t[k]);
                for(i=0;i<=m/2;i++)
                        printf("%.4f    ", u[i][k]);
                printf("\n");
        }

        printf("\n");
        printf("……\n");
        printf("\n");
        printf("0.1000  ");

        for(i=0;i<=m/2;i++)
                printf("%.4f    ", u[i][40]);
        printf("\n");

        for(k=1; k<=4; k=2*k)
        {
                printf("%.4f  ", t[k*100]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k*100]);
                printf("\n");
        }

        return 0;
}


double f(double x, double t)
{
        return 0;
}
double phi(double x)
{
        return 1.0;
}
double alpha(double t)
{
        return 0.0;
}
double beta(double t)
{
        return 0.0;
}

 结果如下:

r=0.2500.
t/x     0          0.1       0.2       0.3       0.4       0.5
0.0025  0.9500    1.0000    1.0000    1.0000    1.0000    1.0000
0.0050  0.9275    0.9875    1.0000    1.0000    1.0000    1.0000
0.0075  0.9111    0.9756    0.9969    1.0000    1.0000    1.0000
0.0100  0.8978    0.9648    0.9923    0.9992    1.0000    1.0000
0.0125  0.8864    0.9549    0.9872    0.9977    0.9998    1.0000
0.0150  0.8764    0.9459    0.9818    0.9956    0.9993    0.9999
0.0175  0.8673    0.9375    0.9762    0.9931    0.9985    0.9996
0.0200  0.8590    0.9296    0.9708    0.9902    0.9974    0.9991

……

0.1000  0.7175    0.7829    0.8345    0.8718    0.8942    0.9017
0.2500  0.5541    0.6048    0.6452    0.6745    0.6923    0.6983
0.5000  0.3612    0.3942    0.4205    0.4396    0.4512    0.4551
1.0000  0.1534    0.1674    0.1786    0.1867    0.1917    0.1933

2. x=0处向前差商,x=1处向后差商

1.2.1 理论推导

        利用一阶向前差商代替微商,可得:

\frac{\partial u}{\partial t}|_{(x_{i},t_{k})}\approx \frac{u(x_{i},t_{k+1})-u(x_{i},t_{k})}{\tau}

\frac{\partial^{2}u}{\partial x^{2}}|_{(x_{i},t_{k})}\approx \frac{u(x_{i+1},t_{k})-2u(x_{i},t_{k})+u(x_{i-1},t_{k})}{h^{2}}

        边界条件处理如下:

\frac{\partial u}{\partial x}|_{(x_{0},t_{k})}\approx \frac{u(x_{1},t_{k})-u(x_{0},t_{k})}{h},\frac{\partial u}{\partial x}|_{(x_{m},t_{k})}\approx \frac{u(x_{m},t_{k})-u(x_{m-1},t_{k})}{h}

        将上式带入公式(2),将数值解代替精确解并忽略高阶项,可得离散格式:

\left\{\begin{matrix} \frac{u^{k+1}_{i}-u^{k}_{i}}{\tau}-a\frac{u^{k}_{i+1}-2u^{k}_{i}+u^{k}_{i-1}}{h^{2}}=f(x_{i},t_{k}),\space\space 1\leqslant i \leqslant m-1,\space\space 0 \leqslant k \leqslant n-1,\\ u^{0}_{i}=\varphi(x_{i}),0 \leqslant i \leqslant m,\space\space\space\space(7) \\ \frac{u^{k}_{1}-u^{k}_{0}}{h}-\lambda u^{k}_{0}=\alpha(t_k),\frac{u^{k}_{m}-u^{k}_{m-1}}{h}+\mu u^{k}_{m}=\beta(t_k), 1 \leqslant k \leqslant n \end{matrix}\right.

整理可得:

\left\{\begin{matrix} u^{k+1}_{i}=ru^{k}_{i-1}+(1-2r)u^{k}_{i}+ru^{k}_{i+1}+\tau f(x_{i},t_{k}),1 \leqslant i\leqslant m-1,0\leqslant k\leqslant n-1,[1] \\ u^{0}_{i}=\varphi(x_{i}),0\leqslant i\leqslant m,[2] \\u^{k}_{0}=\frac{u^{k}_{1}-h\alpha(t_{k})}{1+\lambda h},[3] \\ u^{k}_{m}=\frac{u^{k}_{m-1}+h\beta(t_{k})}{1+\mu h},1\leqslant k\leqslant n,[4] \end{matrix}\right.

1.2.2 算例实现

        抛物型初边值问题:

\left\{\begin{matrix} \frac{\partial u}{\partial t}=\frac{\partial ^{2}u}{\partial x^{2}},\space\space 0<x<1,0<t \leqslant 1,\\ u(x,0)=1,\space\space\space\space 0\leqslant x\leqslant 1,\\ \frac{\partial u}{\partial x}(0,t)=u(0,t),\frac{\partial u}{\partial x}(1,t)=-u(1,t),0<t \leqslant 1, \end{matrix}\right.

已知精确解为u(x,t)=4\sum_{n=1}^{\infty}[\frac{sec\alpha_{n}}{(3+4\alpha^{2}_{n})}e^{-4\alpha^{2}_{n}t}cos2\alpha_{n}(x-\frac{1}{2})],其中\alpha_{n}是方程\alpha tan\alpha=\frac{1}{2}的根。取h=0.1,\tau=0.0025

代码如下:


#include<cmath>
#include<stdio.h>
#include<stdlib.h>


int main(int argc, char* argv[])
{
        int m, n, i, k;
        double h, tau, a,lambda,mu,r;
        double *x, *t,**u;
        double f(double x, double t);
        double phi(double x);
        double alpha(double t);
        double beta(double t);

        m=10;
        n=400;
        h=1.0/m;
        tau=1.0/n;
        a=1.0;
        lambda=1.0;
        mu=1.0;
        r=a*tau/(h*h);
        printf("r=%.4f.\n", r);

        x=(double *)malloc(sizeof(double)*(m+1));
        for(i=0;i<=m;i++)
                x[i]=i*h;

        t=(double *)malloc(sizeof(double)*(n+1));
        for(k=0;k<=n;k++)
                t[k]=k*tau;

        u=(double **)malloc(sizeof(double *)*(m+1));
        for(i=0;i<=m;i++)
                u[i]=(double *)malloc(sizeof(double)*(n+1));

        for(i=0;i<=m;i++)
                u[i][0]=phi(x[i]);

        for(k=0;k<n;k++)
        {
                 for(i=1;i<m;i++)
                     u[i][k+1]=r*u[i-1][k]+(1-2*r)*u[i][k]+r*u[i+1][k]+tau*f(x[i],t[k]);
                 u[0][k+1]=(u[1][k+1]-h*alpha(t[k]))/(1.0+lambda*h);
                 u[m][k+1]=(u[m-1][k+1]+h*beta(t[k]))/(1.0+mu*h);
        }

        printf("t/x     0          0.1       0.2       0.3       0.4       0.5\n");

        for(k=1;k<=8;k++)
        {
                printf("%.4f  ", t[k]);
                for(i=0;i<=m/2;i++)
                        printf("%.4f    ", u[i][k]);
                printf("\n");
        }

        printf("\n");
        printf("……\n");
        printf("\n");
        printf("0.1000  ");

        for(i=0;i<=m/2;i++)
                printf("%.4f    ", u[i][40]);
        printf("\n");

        for(k=1; k<=4; k=2*k)
        {
                printf("%.4f  ", t[k*100]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k*100]);
                printf("\n");
        }

        return 0;
}


double f(double x, double t)
{
        return 0;
}
double phi(double x)
{
        return 1.0;
}
double alpha(double t)
{
        return 0.0;
}
double beta(double t)
{
        return 0.0;
}


结果如下:

r=0.2500.
t/x     0          0.1       0.2       0.3       0.4       0.5
0.0025  0.9091    1.0000    1.0000    1.0000    1.0000    1.0000
0.0050  0.8884    0.9773    1.0000    1.0000    1.0000    1.0000
0.0075  0.8734    0.9607    0.9943    1.0000    1.0000    1.0000
0.0100  0.8612    0.9473    0.9873    0.9986    1.0000    1.0000
0.0125  0.8507    0.9358    0.9801    0.9961    0.9996    1.0000
0.0150  0.8415    0.9256    0.9730    0.9930    0.9989    0.9998
0.0175  0.8331    0.9164    0.9662    0.9895    0.9976    0.9993
0.0200  0.8255    0.9080    0.9596    0.9857    0.9960    0.9985

……

0.1000  0.6901    0.7591    0.8140    0.8537    0.8778    0.8859
0.2500  0.5230    0.5753    0.6170    0.6474    0.6658    0.6720
0.5000  0.3298    0.3627    0.3890    0.4082    0.4198    0.4237
1.0000  0.1311    0.1442    0.1547    0.1623    0.1669    0.1685

2.2 Crank-Nicolson格式

        边界条件采用中心差商。 

2.2.1 理论推导

        在虚拟节点(x_{i},t_{k+\frac{1}2{}})处得离散方程:

\left\{\begin{matrix} \frac{\partial u}{\partial t}|_{({x_{i},t_{k+\frac{1}{2}}})}-a\frac{\partial^{2}u}{\partial x^{2}}|_{({x_{i},t_{k+\frac{1}{2}}})}=f(x_{i},t_{k+\frac{1}{2}}),\\ u(x_{i},t_{0})=\varphi(x_{i}),\space\space\space\space (8)\\ \frac{\partial u}{\partial x}(x_{0},t_{k})-\lambda u(x_{0},t_{k})=\alpha(t_{k}),\frac{\partial u}{\partial x}(x_{m},t_{k})+\mu u(x_{m},t_{k})=\beta(t_{k}) \end{matrix}\right.

        利用差商代替微商:

\frac{\partial u}{\partial t}|_{(x_{i},t_{k+\frac{1}{2}})}\approx \frac{u(x_{i},t_{k+1})-u(x_{i},t_{k})}{\tau}

\frac{\partial^{2}u}{\partial x^{2}}|_{(x_{i},t_{k+\frac{1}{2}})}\approx \frac{1}{2}[\frac{\partial^{2}u}{\partial x^{2}}|_{(x_{i},t_{k})}+\frac{\partial^{2}u}{\partial x^{2}}|_{(x_{i},t_{k+1})}]\approx\frac{1}{2}[\frac{u(x_{i+1},t_{k})-2u(x_{i},t_{k})+u(x_{i-1},t_{k})}{h^{2}}+\frac{u(x_{i+1},t_{k+1})-2u(x_{i},t_{k+1})+u(x_{i-1},t_{k+1})}{h^{2}}]

\frac{\partial u}{\partial x}|_{(x_{0},t_{k})}\approx \frac{u(x_{1},t_{k})-u(x_{-1},t_{k})}{2h},\frac{\partial u}{\partial x}|_{(x_{m},t_{k})}\approx \frac{u(x_{m+1},t_{k})-u(x_{m-1},t_{k})}{2h}

其中u(x_{-1},t_{k}),u(x_{m+1},t_{k})同样越界,将上式代入公式(8),用数值解代替精确解并忽略高阶项,可得离散格式:

\left\{\begin{matrix} \frac{u^{k+1}_{i}-u^{k}_{i}}{\tau}-a\frac{u^{k}_{i+1}-2u^{k}_{i}+u^{k}_{i-1}+u^{k+1}_{i+1}-2u^{k+1}_{i}+u^{k+1}_{i-1}}{2h^{2}}=f(x_{i},t_{k+\frac{1}{2}}),\space\space 1\leqslant i \leqslant m-1,\space\space 0 \leqslant k \leqslant n-1,\\ u^{0}_{i}=\varphi(x_{i}),0 \leqslant i \leqslant m,\space\space\space\space(9) \\ \frac{u^{k}_{1}-u^{k}_{-1}}{2h}-\lambda u^{k}_{0}=\alpha(t_k),\frac{u^{k}_{m+1}-u^{k}_{m-1}}{2h}+\mu u^{k}_{m}=\beta(t_k), 1 \leqslant k \leqslant n \end{matrix}\right.

        公式(9)中第1式可写为

-\frac{r}{2}u^{k+1}_{i-1}+(1+r)u^{k+1}_{i}-\frac{r}{2}u^{k+1}_{i+1}=\frac{r}{2}u^{k}_{i-1}+(1-r)u^{k}_{i}+\frac{r}{2}u^{k}_{i+1}+\tau f(x_{i},t_{k+\frac{1}{2}}),\space\space 1 \leqslant i \leqslant m-1,0 \leqslant k \leqslant n-1 \space\space\space\space (10)

        为处理越界问题,设公式(10)对i=0和i=m都成立,即:

-\frac{r}{2}u^{k+1}_{-1}+(1+r)u^{k+1}_{0}-\frac{r}{2}u^{k+1}_{1}=\frac{r}{2}u^{k}_{-1}+(1-r)u^{k}_{0}+\frac{r}{2}u^{k}_{1}+\tau f(x_{0},t_{k+\frac{1}{2}})

-\frac{r}{2}u^{k+1}_{m-1}+(1+r)u^{k+1}_{m}-\frac{r}{2}u^{k+1}_{m+1}=\frac{r}{2}u^{k}_{m-1}+(1-r)u^{k}_{m}+\frac{r}{2}u^{k}_{m+1}+\tau f(x_{m},t_{k+\frac{1}{2}})

        将上式与公式(9)中的第3式以及u^{k}_{-1}=u^{k}_{1}-2\lambda h u^{k}_{0}-2h\alpha(t_{k})u^{k}_{m+1}=u^{k}_{m-1}-2\mu h u^{k}_{m}+2h\beta(t_{k})联立,可得:

\left\{\begin{matrix} (1+r+r\lambda h)u^{k+1}_{0}-ru^{k+1}_{1} =(1-r-r\lambda h)u^{k}_{0}+ru^{k}_{1}-rh\alpha(t_{k})-rh\alpha(t_{k+1})+\tau f(x_{0},t_{k+\frac{1}{2}})\\ (1+r+r\mu h)u^{k+1}_{m}-ru^{k+1}_{m-1} =(1-r-r\mu h)u^{k}_{m}+ru^{k}_{m-1}+rh\beta(t_{k})+rh\beta(t_{k+1})+\tau f(x_{m},t_{k+\frac{1}{2}}) \end{matrix}\right.

        联合上面两式与公式(10)可得:

\left\{\begin{matrix} (1+r+r\lambda h)u^{k+1}_{0}-ru^{k+1}_{1}=(1-r-r\lambda h)u^{k}_{0}+ru^{k}_{1}-rh\alpha(t_{k})-rh\alpha(t_{k+1})+\tau f(x_{0},t_{k+\frac{1}{2}}),0\leqslant k\leqslant n-1\\ -\frac{r}{2}u^{k+1}_{i-1}+(1+r)u^{k+1}_{i}-\frac{r}{2}u^{k+1}_{i+1}=\frac{r}{2}u^{k}_{i-1}+(1-r)u^{k}_{i}+\frac{r}{2}u^{k}_{i+1}+\tau f(x_{i},t_{k+\frac{1}{2}}),1\leqslant i\leqslant m-1,0\leqslant k\leqslant n-1,\\ -ru^{k+1}_{m-1}+(1+r+r\mu h)u^{k+1}_{m}=ru^{k}_{m-1}+(1-r-r\mu h)u^{k}_{m}+rh\beta(t_{k})+rh\beta(t_{k+1})+\tau f(x_{m},t_{k+\frac{1}{2}}),0\leqslant k\leqslant n-1,\\ u^{0}_{i}=\varphi(x_{i}),0\leqslant i\leqslant m\end{matrix}\right.

        上式可写出矩阵形式:

\begin{pmatrix} 1+r+r\lambda h & -r & & & & \\ -\frac{r}{2} & 1+r & -\frac{r}{2} & & 0 & \\ & & \ddots & & & \\ & & & \ddots & & \\ & 0 & & -\frac{r}{2} & 1+r &-\frac{r}{2} \\ & & & & -r & 1+r+r\mu h \end{pmatrix}\begin{pmatrix} u^{k+1}_{0}\\ u^{k+1}_{1}\\ \vdots\\ \vdots\\ u^{k+1}_{m-1}\\ u^{k+1}_{m} \end{pmatrix}=

\begin{pmatrix} 1-r-r\lambda h & r & & & & \\ \frac{r}{2} & 1-r & \frac{r}{2} & & 0 & \\ & & \ddots & & & \\ & & & \ddots & & \\ & 0 & & \frac{r}{2} & 1-r &\frac{r}{2} \\ & & & & r & 1-r-r\mu h \end{pmatrix}\begin{pmatrix} u^{k}_{0}\\ u^{k}_{1}\\ \vdots\\ \vdots\\ u^{k}_{m-1}\\ u^{k}_{m} \end{pmatrix}+\begin{pmatrix} -rh\alpha(t_{k})-rh\alpha(t_{k+1})+\tau f(x_{0},t_{k+\frac{1}{2}})\\ \tau f(x_{1},t_{k+\frac{1}{2}})\\ \vdots\\ \vdots\\ \tau f(x_{m-1},t_{k+\frac{1}{2}})\\ rh\beta(t_{k})+rh\beta(t_{k+1})+\tau f(x_{m},t_{k+\frac{1}{2}}) \end{pmatrix}

        上式可用追赶法求解。

2.2.2 算例实现

        抛物型初边值问题:

\left\{\begin{matrix} \frac{\partial u}{\partial t}=\frac{\partial ^{2}u}{\partial x^{2}},\space\space 0<x<1,0<t \leqslant 1,\\ u(x,0)=1,\space\space\space\space 0\leqslant x\leqslant 1,\\ \frac{\partial u}{\partial x}(0,t)=u(0,t),\frac{\partial u}{\partial x}(1,t)=-u(1,t),0<t \leqslant 1, \end{matrix}\right.

已知精确解为u(x,t)=4\sum_{n=1}^{\infty}[\frac{sec\alpha_{n}}{(3+4\alpha^{2}_{n})}e^{-4\alpha^{2}_{n}t}cos2\alpha_{n}(x-\frac{1}{2})],其中\alpha_{n}是方程\alpha tan\alpha=\frac{1}{2}的根。取h=0.1,\tau=0.0025

代码如下:


#include<cmath>
#include<stdio.h>
#include<stdlib.h>


int main(int argc, char* argv[])
{
        int m, n, i, k;
        double h, tau, a, lambda,mu,r;
        double *x, *t, *a1, *b, *c, *d, *ans, **u, tkmid;
        double f(double x, double t);
        double phi(double x);
        double alpha(double t);
        double beta(double t);
        double * chase_algorithm(double *a, double *b, double *c, double *d, int n);

        m=10;
        n=400;
        h=1.0/m;
        tau=1.0/n;
        a=1.0;
        lambda=1.0;
        mu=1.0;
        r=a*tau/(h*h);
        printf("r=%.4f\n", r);

        x=(double *)malloc(sizeof(double)*(m+1));
        for(i=0;i<=m;i++)
                x[i] = i*h;

        t=(double *)malloc(sizeof(double)*(n+1));
        for(k=0;k<=n;k++)
                t[k] = k*tau;

        u=(double **)malloc(sizeof(double *)*(m+1));
        for(i=0;i<=m;i++)
                u[i]=(double *)malloc(sizeof(double)*(n+1));

        for(i=0;i<=m;i++)
                u[i][0]=phi(x[i]);

        a1=(double *)malloc(sizeof(double)*(m+1));
        b=(double *)malloc(sizeof(double)*(m+1));
        c=(double *)malloc(sizeof(double)*(m+1));
        d=(double *)malloc(sizeof(double)*(m+1));
        ans=(double *)malloc(sizeof(double)*(m+1));

        for(k=0;k<n;k++)
        {
                tkmid=(t[k]+t[k+1])/2.0;
                for(i=1;i<m;i++)
                {
                         d[i]=r*u[i-1][k]/2.0+(1.0-r)*u[i][k]+r*u[i+1][k]/2.0+tau*f(x[i],tkmid);
                         a1[i]=-r/2.0;
                         b[i]=1.0+r;
                         c[i]=a1[i];
                }
                b[0]=1.0+r+r*lambda*h;
                b[m]=1.0+r+r*mu*h;
                c[0]=-r;
                a1[m]=-r;

                d[0]=(1.0-r-r*lambda*h)*u[0][k]+r*u[1][k]-r*h*alpha(t[k])-r*h*alpha(t[k+1])+tau*f(x[0],tkmid);
                d[m]=r*u[m-1][k]+(1.0-r-r*mu*h)*u[m][k]+r*h*beta(t[k])+r*h*beta(t[k+1])+tau*f(x[m],tkmid);
                ans=chase_algorithm(a1,b,c,d,m+1);
                for(i=0;i<=m;i++)
                         u[i][k+1]=ans[i];
        }

        free(a1);free(b);free(c);free(d);

        printf("t/x     0          0.1       0.2       0.3       0.4       0.5\n");
        for(k=1;k<=8;k++)
        {
                printf("%.4f  ", t[k]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k]);
                printf("\n");
        }
        printf("\n");
        printf("……\n");
        printf("\n");
        printf("0.1000  ");
        for(i=0;i<=m/2;i++)
                printf("%.4f    ", u[i][40]);
        printf("\n");

        for(k=1;k<=4;k=2*k)
        {
                printf("%.4f  ", t[k*100]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k*100]);
                printf("\n");
        }

        return 0;
}


double f(double x, double t)
{
        return 0;
}
double phi(double x)
{
        return 1.0;
}
double alpha(double t)
{
        return 0.0;
}
double beta(double t)
{
        return 0.0;
}
double * chase_algorithm(double *a, double *b, double *c, double *d, int n)
{
        int i;
        double * ans, *g, *w, p;

        ans=(double *)malloc(sizeof(double)*n);
        g=(double *)malloc(sizeof(double)*n);
        w=(double *)malloc(sizeof(double)*n);
        g[0]=d[0]/b[0];
        w[0]=c[0]/b[0];

        for(i=1;i<n;i++)
        {
                p=b[i]-a[i]*w[i-1];
                g[i]=(d[i]-a[i]*g[i-1])/p;
                w[i]=c[i]/p;
        }
        ans[n-1]=g[n-1];
        i=n-2;
        do
        {
                ans[i]=g[i]-w[i]*ans[i+1];
                i=i-1;
        }while(i>=0);

        free(g);free(w);

        return ans;
}

结果如下:

r=0.2500
t/x     0          0.1       0.2       0.3       0.4       0.5
0.0025  0.9600    0.9960    0.9996    1.0000    1.0000    1.0000
0.0050  0.9347    0.9868    0.9980    0.9997    1.0000    1.0000
0.0075  0.9164    0.9765    0.9950    0.9991    0.9999    1.0000
0.0100  0.9021    0.9663    0.9910    0.9980    0.9996    0.9999
0.0125  0.8900    0.9567    0.9864    0.9964    0.9992    0.9997
0.0150  0.8795    0.9478    0.9813    0.9944    0.9985    0.9993
0.0175  0.8701    0.9394    0.9762    0.9920    0.9975    0.9988
0.0200  0.8616    0.9315    0.9709    0.9893    0.9963    0.9981

……

0.1000  0.7180    0.7834    0.8350    0.8720    0.8943    0.9017
0.2500  0.5547    0.6054    0.6458    0.6751    0.6929    0.6989
0.5000  0.3618    0.3949    0.4213    0.4404    0.4520    0.4559
1.0000  0.1540    0.1681    0.1793    0.1874    0.1924    0.1940

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/548560.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

高分一号卫星(GF-1):中国遥感科技的骄傲

高分一号卫星&#xff08;GF-1&#xff09;是中国遥感科技领域的一项突破性成就&#xff0c;其引入了先进的成像技术和灵活的数据获取模式&#xff0c;为中国的资源管理、环境监测和城市规划等领域带来了巨大的变革。本文将深入介绍高分一号卫星的技术参数、成像能力以及应用场…

抽奖系统设计

如何设计一个百万级用户的抽奖系统&#xff1f; - 掘金 如何设计百万人抽奖系统…… 在实现抽奖逻辑时&#xff0c;Redis 提供了多种数据结构&#xff0c;选择哪种数据结构取决于具体的抽奖规则和需求。以下是一些常见场景下推荐使用的Redis数据结构&#xff1a; 无序且唯一奖…

解析数据科学,探索ChatGPT背后的奥秘

在当今这个由数据驱动和AI蓬勃发展的时代&#xff0c;数据科学作为一门融合多种学科的综合性领域&#xff0c;对于推动各行各业实现数字化转型升级起着至关重要的作用。近年来&#xff0c;大语言模型技术发展态势强劲&#xff0c;为数据科学的进步做出了巨大贡献。其中&#xf…

第四百六十二回

文章目录 1. 概念介绍2. 实现方法3. 示例代码4. 内容总结 我们在上一章回中介绍了"关于MediaQuery的优化"相关的内容&#xff0c;本章回中将介绍readMore这个三方包.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们在本章回中介绍的readMore是一个…

新经济助推高质量发展“大有云钞”聚焦未来趋势

近日&#xff0c;由大有云钞科技&#xff08;北京&#xff09;有限公司主办的一场关于“新经济助力高质量发展法治研讨会”在北京国家会议中心隆重举行。此次研讨会汇聚了来自政府、企业、学术界和法律界的众多专家学者&#xff0c;共同探讨新经济背景下的法治建设和高质量发展…

Scrapy 框架基础

Scrapy框架基础Scrapy框架进阶 Scrapy 框架基础 【一】框架介绍 【1】简介 Scrapy是一个用于网络爬取的快速高级框架&#xff0c;使用Python编写他不仅可以用于数据挖掘&#xff0c;还可以用于检测和自动化测试等任务 【2】框架 官网链接https://docs.scrapy.org/en/late…

YesPMP平台 | 活动有礼,现金奖励点击领取!

YesPMP众包平台在线发福利啦&#xff0c;活动火热开启&#xff0c;现金奖励等你来领&#xff0c;最高可领千元&#xff0c;赶快参与将奖励收入囊中&#xff0c;一起来了解活动细节吧&#xff01; 一、活动内容&#xff1a; 活动一&#xff1a;【项目征集令】活动&#xff0c;…

二路归并排序的算法设计和复杂度分析(C语言)

目录 实验内容&#xff1a; 实验过程&#xff1a; 1.算法设计 2.程序清单 3.运行结果 4.算法复杂度分析 实验内容&#xff1a; 二路归并排序的算法设计和复杂度分析。 实验过程&#xff1a; 1.算法设计 二路归并排序算法&#xff0c;分为两个阶段&#xff0c;首先对待排…

Anaconda下的tensorflow安装

关于Anaconda的安装以及配置可以浏览我的上一篇博客Anaconda的安装与配置 下面是安装tensorflow的命令&#xff0c;使用下列指令安装前需要配置好CUDA&#xff0c;关于CUDA的配置在上一篇博客中有详细的步骤描述。 关于官方环境配置的要求可以浏览官网&#xff1a;https://t…

每帧纵享丝滑——ToDesk云电脑、网易云游戏、无影云评测分析及ComfyUI部署

目录 一、前言二、云电脑性能测评分析2.1、基本配置分析2.1.1、处理器方面2.1.2、显卡方面2.1.3、内存与存储方面2.1.4、软件功能方面 2.2、综合跑分评测 三、软件应用实测分析3.1、云电竞测评3.2、AIGC科研测评——ComfyUI部署3.2.1、下载与激活工作台3.2.2、加载模型与体验3.…

yolov8目标检测 部署瑞芯微rk3588记录

1. 前置条件 本地电脑系统&#xff0c;ubuntu20.04 训练代码&#xff1a; 训练代码下载的ultralytics官方代码 SHA&#xff1a;6a2fddfb46aea45dd26cb060157d22cf14cd8c64 训练代码仅做数据修改&#xff0c;类别修改&#xff0c;代码结构未做任何修改 需要准备的代码&#…

基于springboot+vue+Mysql的论坛管理系统

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…

图深度学习(一):介绍与概念

目录 一、介绍 二、图的数据结构 三、图深度学习的基本模型 四、图深度学习的基本操作和概念 五、训练过程 六、主要应用场景 七、总结 一、介绍 图深度学习是将深度学习应用于图形数据结构的领域&#xff0c;它结合了图论的概念和深度学习的技术&#xff0c;用以处理和…

刷新认知,Python中循环结构可以这么简单?

应用场景 我们在写程序的时候&#xff0c;一定会遇到需要重复执行某条或某些指令的场景。例如用程序控制机器人踢足球&#xff0c;如果机器人持球而且还没有进入射门范围&#xff0c;那么我们就要一直发出让机器人向球门方向移动的指令。 在这个场景中&#xff0c;让机器人向…

大数据建模理论

文章目录 一、数仓概述1、数据仓库概念1.1 概述1.2 数据仓库与数据库的区别1.3 技术选型和架构 2、数仓常见名词2.1 实体2.2 维度2.3 度量2.4 粒度2.5 口径2.6 指标2.7 标签2.8 自然键/持久键/代理键2.9 退化维度2.10 下钻/上卷2.11 数据集市 3、数仓名词之间关系3.1 实体表&am…

这个项目我投了,给 OceanBase 数据库诊断提提速!

1. 前言 昨天晚上公司内部直播分享了一下OceanBase敏捷版诊断工具obdiag&#xff0c;主要的目的是拉齐一下前线和后端开发人员的诊断OceanBase问题的信息&#xff0c;众人拾柴火焰高&#xff0c;大家一起把obdiag做起来。晚上回去想了想&#xff0c;obdiag既然是开源项目&…

SiLM5350系列带米勒钳位的单通道隔离驱动器 助力汽车与工业应用实现稳定与高效的解决方案

带米勒钳位的隔离驱动SiLM5350系列 单通道 30V&#xff0c;10A 带米勒钳位的隔离驱动 具有驱动电流更大、传输延时更低、抗干扰能力更强、封装体积更小等优势, 为提高电源转换效率、安全性和可靠性提供理想之选。 SiLM5350系列产品描述&#xff1a; SiLM5350系列是单通道隔离驱…

[入门]测试原则-ApiHug准备-测试篇-002

&#x1f917; ApiHug {Postman|Swagger|Api...} 快↑ 准√ 省↓ GitHub - apihug/apihug.com: All abou the Apihug apihug.com: 有爱&#xff0c;有温度&#xff0c;有质量&#xff0c;有信任ApiHug - API design Copilot - IntelliJ IDEs Plugin | Marketplace 写在前面…

GT资源-CPLL QPLL

一、前言 QPLL与CPLL是两种为GT Channel提供时钟的锁相环&#xff0c;其中CPLL与GT Channel绑定&#xff0c;每一个通道都有一个CPLL&#xff0c;而QPLL是与Quad绑定&#xff0c;每一个Quad有一个QPLL&#xff0c;4个通道共享一个QPLL 二、CPLL 每个GTX/GTH收发器通道包含一…

luigi,一个超级厉害的 Python 库!

什么是 Python Luigi&#xff1f; Python Luigi 是一个用于构建复杂数据处理管道&#xff08;工作流&#xff09;的Python模块。Luigi由Spotify开发并维护&#xff0c;旨在简化和管理大规模数据处理任务的执行。 关键特点包括&#xff1a; 1.任务定义&#xff1a; Luigi允许…