深度学习应用技巧4-模型融合:投票法、加权平均法、集成模型法

大家好,我是微学AI,今天给大家介绍一下,深度学习中的模型融合。它是将多个深度学习模型或其预测结果结合起来,以提高模型整体性能的一种技术。

深度学习中的模型融合技术,也叫做集成学习,是指同时使用多个模型来进行预测或分类,将它们的结果结合起来,从而获得更准确、更鲁棒的结果。这种方法能够弥补单个模型的不足之处,提高模型的性能。 

常见的深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)等,在实际应用中,通常会使用多个模型来解决同一个任务。然而,单独使用每个模型可能会存在过拟合、欠拟合、训练时间长等一些问题。这时,模型融合技术就派上用场了。 对于模型融合技术,其主要的思想是结合多个模型的优点,减少缺点,从而提高整体的性能。

一、模型融合技巧主要包括以下几个方面

1. 投票法: 对多个相同类型的模型进行训练,最后通过投票的方式选择输出结果最多的类别作为最终的预测结果。在实践中,通常会使用奇数个模型,以避免出现相同数量的投票结果。

2. 加权平均法: 对多个相同类型的模型的输出结果进行加权平均。采用加权平均法融合的模型,可以根据效果不同,分配不同的权重。

3. 集成多种不同类型的模型: 在深度学习中,常常会使用不同类型的模型,如 CNN、 RNN 、 LSTM 等,将它们进行集成,综合利用不同模型的优点,进一步提高系统的性能。

4. 提前停止模型训练: 训练多个模型时,如果其中一个模型已经达到了最优的状态,可以停止继续训练,以达到快速训练过程和提高融合效果的目的。

模型融合主要提高了深度学习模型的表现力和泛化性能,更好的解决了过拟合等问题。在选择模型融合技巧时,可以根据具体实际应用选择不同的融合方法,灵活运用各种方法,从而得到更好的模型效果。

应用场景想象:

想象你正在参加一个模型比赛,需要对一些数据进行预测。你仅使用了一个模型进行预测,但是你发现这个模型可能存在某些缺陷,导致预测结果不够准确,于是你想到使用模型融合技术。 你开始集成三个不同的模型,每一个模型都有自己的特点和优缺点。为了得到集成模型的预测结果,你可以采用堆叠法,即把三个模型的预测结果作为输入特征,再训练一个新的模型进行预测。通过堆叠,你得到了一个更加准确的预测结果。 如果你觉得模型之间存在评估的差异,你也可以使用加权平均法来集成模型。你可以根据每一个模型的表现,为它们分配一定的权重,然后根据这些权重,对它们输出的结果进行加权平均,从而得到更加精确的预测结果。 最后,你也可以使用投票法,这种方法是将多个模型的预测结果进行投票,选择获得最多票数的结果作为最终预测结果。它会适用于模型数量较多的情况,即使其中某个模型出现了不准确的情况,也不会对最终结果有太大的影响。 通过这些集成模型的方法,你可以在深度学习中获得更为准确、稳定的预测结果,从而提升模型的性能和可靠性。

二、模型融合代码样例

下面我将利用投票法、加权平均法和集成模型法三种方式对CNN网络进行融合。

import numpy as np
from sklearn.metrics import accuracy_score
from tensorflow import keras
from tensorflow.keras import layers

# 加载 MNIST 数据集
(train_images, train_labels), (test_images, test_labels) = keras.datasets.mnist.load_data()

# 将像素值缩放到 0-1 范围内
train_images = train_images.astype('float32') / 255.
test_images = test_images.astype('float32') / 255.

# 将标签转换为 one-hot 编码
train_labels = keras.utils.to_categorical(train_labels, 10)
test_labels = keras.utils.to_categorical(test_labels, 10)

# 定义 CNN 模型
def create_model():
    model = keras.Sequential()
    model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation='relu'))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation='relu'))
    model.add(layers.Flatten())
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(10, activation='softmax'))
    return model

# 创建多个 CNN 模型
models = []
for i in range(3):
    model = create_model()
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    model.fit(train_images, train_labels, epochs=5, batch_size=128, verbose=1)
    models.append(model)

1.投票法:对测试集进行预测,并取预测结果的众数作为最终预测结果

predictions = []
for model in models:
    predictions.append(model.predict(test_images))
y_pred = np.argmax(np.round(np.mean(predictions, axis=0)), axis=1)
y_true = np.argmax(test_labels, axis=1)

# 计算准确率
acc = accuracy_score(y_true, y_pred)
print("使用投票法进行模型融合的准确率:", acc)

2.加权平均法:为每个模型定义一个权重,并将预测结果加权平均

weights = [0.2, 0.3, 0.5]
predictions = []
for i, model in enumerate(models):
    prediction = model.predict(test_images)
    predictions.append(weights[i] * prediction)
y_pred = np.argmax(np.sum(predictions, axis=0), axis=1)
y_true = np.argmax(test_labels, axis=1)

# 计算准确率
acc = accuracy_score(y_true, y_pred)
print("使用加权平均法进行模型融合的准确率:", acc)

3.模型集成法:将多个 CNN 模型堆叠在一起,将其看作一个更强大的模型,并对测试集进行预测

inputs = keras.Input(shape=(28, 28, 1))
outputs = [model(inputs) for model in models]
y = layers.Average()(outputs)
ensemble_model = keras.Model(inputs=inputs, outputs=y)
ensemble_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练集成模型
ensemble_model.fit(train_images, train_labels, epochs=5, batch_size=64)

# 测试集成模型
predictions = ensemble_model.predict(test_images)
y_pred = np.argmax(predictions, axis=1)
y_true = np.argmax(test_labels, axis=1)

# 计算准确率
acc = accuracy_score(y_true, y_pred)
print("使用模型集成方法进行模型融合的准确率:", acc)

最后我们可以看三种方法的准确率,在实战案例中根据业务需求进行方法的选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/5480.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

209. 长度最小的子数组

209. 长度最小的子数组 力扣题目链接(opens new window) 给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。 示例: 输入…

Java实现查找文件

1 问题 如何利用java来查找文件? 2 方法 2.1定义一个查找类,设置两个参数(查找的目录和文件后缀名),然后判断文件夹是否为空 2.2 判断是否是文件夹,如果是文件夹则将里面的文件放入数组进行遍历&#xff08…

【Python零基础学习入门篇①】——基本语法与变量

⬇️⬇️⬇️⬇️⬇️⬇️ ⭐⭐⭐Hello,大家好呀我是陈童学,一个普通大一在校生,请大家多多关照呀嘿嘿😁😊😘 🌟🌟🌟技术这条路固然很艰辛,但既已选择&#x…

Redis 事务相关操作

Redis 作为一个非关系型内存数据库,也有事务定义 1. 事务的定义-ACID特性 A表示原子性:即事务是一个不可分割的实体,事务中的操作要么都完成,要么都不完成 C表示一致性:即事务前后数据完整性必须一致,假…

基于springboot实现数码论坛系统设计与实现演示【附项目源码+论文说明】

基于springboot实现数码论坛系统设计与实现演示开发语言:Java 框架:springboot JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Maven…

Jieba分词的准确率提升:使用paddle模式进行分词(使用百度飞桨深度学习模型进行分词)

1 Paddle模式简介 jieba中的paddle模式是指使用飞桨(PaddlePaddle)深度学习框架加速分词的一种模式。相对于传统的分词算法,paddle模式采用了深度学习模型,可以获得更高的分词准确度和更快的分词速度。 paddle模式是基于卷积神经…

数据分析之Pandas(2)

3.Pandas 文章目录3.Pandas3.3 Pandas进阶3.3.1 数据重塑和轴向旋转(1)层次化索引Series的层次化索引DataFrame的层次化索引层次化——电影数据示列(2)数据旋转3.3.2 数据分组、分组运算3.3.3 离散化处理3.3.4 合并数据集&#xf…

使用langchain打造自己的大型语言模型(LLMs)

我们知道Openai的聊天机器人可以回答用户提出的绝大多数问题,它几乎无所不知,无所不能,但是由于有机器人所学习到的是截止到2021年9月以前的知识,所以当用户询问机器人关于2021年9月以后发送的事情时,它无法给出正确的答案&#x…

【Java 21 新特性 】顺序集合(Sequenced Collections)

Java 21 中增加了一种新的集合类型:顺序集合(Sequenced Collections)。要介绍顺序集合,就首先要说明一下出现顺序(encounter order)。出现顺序指的是在遍历一个集合时,集合中元素的出现顺序。有…

Redis高频40问

Redis连环40问,绝对够全! Redis是什么? Redis(Remote Dictionary Server)是一个使用 C 语言编写的,高性能非关系型的键值对数据库。与传统数据库不同的是,Redis 的数据是存在内存中的&#xf…

Python:每日一题之《全排列的价值》真题练习

问题描述 对于一个排列 A(a1​,a2​,⋯,an​), 定义价值 ci​ 为 a1​ 至 ai−1​ 中小于 ai​ 的数 的个数, 即 。 ci​∣{aj​∣j<i,aj​<ai​}∣。 ​ 定义 A 的价值为 ∑i1n​ci​ 。 给定 n, 求 1 至 n 的全排列中所有排列的价值之和。 输入格式 输入一行包含…

SpringBoot(五) Docker

一、简介 Docker是一个开源的应用容器引擎&#xff1b; Docker支持将软件编译成一个镜像&#xff1b;然后在镜像中各种软件做好配置&#xff0c;将镜像发布出去&#xff0c;其他使用者可以直接使用这个镜像。 运行中的这个镜像称为容器&#xff0c;容器启动是非常快速的。类似…

HTB-soccer

信息收集 22 ssh80 http9091 对80进行检查。 搜索得知存在默认登陆密码admin:admin123 和 user:12345。 右上角有一个upload&#xff0c;试试能不能本地上传。 能够获取上传的路径&#xff0c;但是此文件没有写入权限。 切换到tiny文件夹再次上传。 在/tiny/uploads能够…

文心一言,被网友玩坏了哈哈哈哈哈哈哈

现在人工智能正火&#xff0c;百度“文心一言”出来&#xff0c;虽然只是小范围测试&#xff0c;但已经被玩坏了&#xff01;这应该算是卖全羊送狗肉娃娃…菜…也没毛病哈看来对美女还有些误解虎头虎脑的胖大胖小子哈哈哈哈哈鸳鸯和锅都有&#xff0c;还不满意吗什么奇行种似乎…

数据结构和算法(3):递归

目录概述单路递归 Single Recursion多路递归 Multi Recursion递归优化-记忆法递归时间复杂度-Master theorem递归时间复杂度-展开求解概述 定义 计算机科学中&#xff0c;递归是一种解决计算问题的方法&#xff0c;其中解决方案取决于同一类问题的更小子集 In computer scien…

情感语音转换学习

情感语音转换&#xff08;Emotional Voice conversion&#xff09; 言语不仅仅是词汇&#xff0c;它承载着说话者的情感。之前的研究(Mehrabian和Wiener, 1967)表明&#xff0c;在交流情感和态度时&#xff0c;口头语言只传达了7%的信息&#xff0c;非语言的声音属性(38%)和面…

简单研究一下 OpenAI 的官方文档

文档地址&#xff1a;https://platform.openai.com/docs/ 接口说明&#xff1a;https://platform.openai.com/docs/api-reference 一、概览 OpenAI API 可直接调用模型接口&#xff0c;也可在线微调&#xff08;不过只能微调GPT-3系列模型&#xff09;。 本小节主要介绍 toke…

定长内存池的实现

文章目录 什么是内存池 池化技术内存池内存池主要解决的问题malloc定长内存池的实现前言 当前项目是实现一个高并发的内存池&#xff0c;他的原型是Google的一个开源项目tcmalloc&#xff0c;tcmalloc全称Thread-Caching Malloc&#xff0c;即线程缓存的malloc&#xff0c;实现…

python用户价值分析

数据获取&#xff1a; 表格数据 数据清洗后数据&#xff1a;链接&#xff1a;https://pan.baidu.com/s/1D7qOZqKmF3YR3meQPsp3sQ 提取码&#xff1a;1234 数据下载下来后&#xff0c;先进行数据清洗。数据清洗在进行用户价值分析,也可以直接下载我清洗后的数据。 RFM模型&a…

springcloud微服务架构搭建过程

项目地址&#xff1a;源代码 仅作为学习用例使用&#xff0c;是我开发过程中的总结、实际的一部分使用方式 开发环境&#xff1a; jdk11 springboot2.7.6 springcloud2021.0.5 alibabacloud 2021.0.4.0 redis6.0 mysql8.0 一、项目搭建 wdz-api&#xff1a;存放远程服务调用相关…