G2D图像处理硬件调用和测试-基于米尔-全志T113-i开发板

本篇测评由电子工程世界的优秀测评者“jf_99374259”提供。


本文将介绍基于米尔电子MYD-YT113i开发板的G2D图像处理硬件调用和测试。

MYC-YT113i核心板及开发板

真正的国产核心板,100%国产物料认证

  • 国产T113-i处理器配备2*Cortex-A7@1.2GHz ,RISC-V

  • 外置DDR3接口、支持视频编解码器、HiFi4 DSP

  • 接口丰富:视频采集接口、显示器接口、USB2.0 接口、CAN 接口、千兆以太网接口

  • 工业级:-40℃~+85℃、尺寸37mm*39mm

  • 邮票孔+LGA,140+50PIN

全志 T113-i 2D图形加速硬件支持情况

  • Supports layer size up to 2048 x 2048 pixels

  • Supports pre-multiply alpha image data

  • Supports color key

  • Supports two pipes Porter-Duff alpha blending

  • Supports multiple video formats 4:2:0, 4:2:2, 4:1:1 and multiple pixel formats (8/16/24/32 bits graphics layer)

  • Supports memory scan order option

  • Supports any format convert function

  • Supports 1/16× to 32× resize ratio

  • Supports 32-phase 8-tap horizontal anti-alias filter and 32-phase 4-tap vertical anti-alias filter

  • Supports window clip

  • Supports FillRectangle, BitBlit, StretchBlit and MaskBlit

  • Supports horizontal and vertical flip, clockwise 0/90/180/270 degree rotate for normal buffer

  • Supports horizontal flip, clockwise 0/90/270 degree rotate for LBC buffer

可以看到 g2d 硬件支持相当多的2D图像处理,包括颜色空间转换,分辨率缩放,图层叠加,旋转等

开发环境配置

基础开发环境搭建参考上上上一篇

【米尔-全志T113-i开发板试用】基础开发环境配置和opencv-mobile移植测试 - 米尔电子 - 电子技术论坛 - 广受欢迎的专业电子论坛!

除了工具链外,我们使用 opencv-mobile 加载输入图片和保存结果,用来查看颜色转换是否正常

g2d硬件直接采用标准的 Linux ioctl 操纵,只需要引入相关结构体定义即可,无需链接so

framework/auto/sdk_lib/include/g2d_driver.h at develop-yt113-framework · MYIR-ALLWINNER/framework · GitHub

此外,g2d的输入和输出数据必须在dmaion buffer上,因此还需要dmaion.h头文件,用来分配和释放dmaion buffer

framework/auto/sdk_lib/include/DmaIon.h at develop-yt113-framework · MYIR-ALLWINNER/framework · GitHub

基于C语言实现的YUV转RGB

这里复用之前T113-i JPG解码的函数

void yuv420sp2rgb(const unsigned char* yuv420sp, int w, int h, unsigned char* rgb)
{
    const unsigned char* yptr = yuv420sp;
    const unsigned char* vuptr = yuv420sp + w * h;
    
    for (int y = 0; y < h; y += 2)
    {
       const unsigned char* yptr0 = yptr;
       const unsigned char* yptr1 = yptr + w;
       unsigned char* rgb0 = rgb;
       unsigned char* rgb1 = rgb + w * 3;
       
       int remain = w;
       
#define SATURATE_CAST_UCHAR(X) (unsigned char)::std::min(::std::max((int)(X), 0), 255);
       for (; remain > 0; remain -= 2)
       {
          // R = 1.164 * yy + 1.596 * vv
          // G = 1.164 * yy - 0.813 * vv - 0.391 * uu
          // B = 1.164 * yy              + 2.018 * uu
          
          // R = Y + (1.370705 * (V-128))
          // G = Y - (0.698001 * (V-128)) - (0.337633 * (U-128))
          // B = Y + (1.732446 * (U-128))
          
          // R = ((Y << 6) + 87.72512 * (V-128)) >> 6
          // G = ((Y << 6) - 44.672064 * (V-128) - 21.608512 * (U-128)) >> 6
          // B = ((Y << 6) + 110.876544 * (U-128)) >> 6
          
          // R = ((Y << 6) + 90 * (V-128)) >> 6
          // G = ((Y << 6) - 46 * (V-128) - 22 * (U-128)) >> 6
          // B = ((Y << 6) + 113 * (U-128)) >> 6
          
          // R = (yy + 90 * vv) >> 6
          // G = (yy - 46 * vv - 22 * uu) >> 6
          // B = (yy + 113 * uu) >> 6
          
          int v = vuptr[0] - 128;
          int u = vuptr[1] - 128;
          
          int ruv = 90 * v;
          int guv = -46 * v + -22 * u;
          int buv = 113 * u;
          
          int y00 = yptr0[0] << 6;
          rgb0[0] = SATURATE_CAST_UCHAR((y00 + ruv) >> 6);
          rgb0[1] = SATURATE_CAST_UCHAR((y00 + guv) >> 6);
          rgb0[2] = SATURATE_CAST_UCHAR((y00 + buv) >> 6);
          
          int y01 = yptr0[1] << 6;
          rgb0[3] = SATURATE_CAST_UCHAR((y01 + ruv) >> 6);
          rgb0[4] = SATURATE_CAST_UCHAR((y01 + guv) >> 6);
          rgb0[5] = SATURATE_CAST_UCHAR((y01 + buv) >> 6);
          
          int y10 = yptr1[0] << 6;
          rgb1[0] = SATURATE_CAST_UCHAR((y10 + ruv) >> 6);
          rgb1[1] = SATURATE_CAST_UCHAR((y10 + guv) >> 6);
          rgb1[2] = SATURATE_CAST_UCHAR((y10 + buv) >> 6);
          
          int y11 = yptr1[1] << 6;
          rgb1[3] = SATURATE_CAST_UCHAR((y11 + ruv) >> 6);
          rgb1[4] = SATURATE_CAST_UCHAR((y11 + guv) >> 6);
          rgb1[5] = SATURATE_CAST_UCHAR((y11 + buv) >> 6);
          
          yptr0 += 2;
          yptr1 += 2;
          vuptr += 2;
          rgb0 += 6;
          rgb1 += 6;
       }
#undef SATURATE_CAST_UCHAR

       yptr += 2 * w;
       rgb += 2 * 3 * w;
    }
}

基于ARM neon指令集优化的YUV转RGB

考虑到armv7编译器的自动neon优化能力较差,这里针对性的编写 arm neon inline assembly 实现YUV2RGB内核部分,达到最优化的性能,榨干cpu性能

void yuv420sp2rgb_neon(const unsigned char* yuv420sp, int w, int h, unsigned char* rgb)
{
    const unsigned char* yptr = yuv420sp;
    const unsigned char* vuptr = yuv420sp + w * h;
    
#if __ARM_NEON
    uint8x8_t _v128 = vdup_n_u8(128);
    int8x8_t _v90 = vdup_n_s8(90);
    int8x8_t _v46 = vdup_n_s8(46);
    int8x8_t _v22 = vdup_n_s8(22);
    int8x8_t _v113 = vdup_n_s8(113);
#endif // __ARM_NEON

    for (int y = 0; y < h; y += 2)
    {
       const unsigned char* yptr0 = yptr;
       const unsigned char* yptr1 = yptr + w;
       unsigned char* rgb0 = rgb;
       unsigned char* rgb1 = rgb + w * 3;
       
#if __ARM_NEON
       int nn = w >> 3;
       int remain = w - (nn << 3);
    
#else
       int remain = w;
#endif // __ARM_NEON

#if __ARM_NEON
#if __aarch64__
       for (; nn > 0; nn--)
       {
          int16x8_t _yy0 = vreinterpretq_s16_u16(vshll_n_u8(vld1_u8(yptr0), 6));
          int16x8_t _yy1 = vreinterpretq_s16_u16(vshll_n_u8(vld1_u8(yptr1), 6));
          
          int8x8_t _vvuu = vreinterpret_s8_u8(vsub_u8(vld1_u8(vuptr), _v128));
          int8x8x2_t _vvvvuuuu = vtrn_s8(_vvuu, _vvuu);
          int8x8_t _vv = _vvvvuuuu.val[0];
          int8x8_t _uu = _vvvvuuuu.val[1];
          
          int16x8_t _r0 = vmlal_s8(_yy0, _vv, _v90);
          int16x8_t _g0 = vmlsl_s8(_yy0, _vv, _v46);
          _g0 = vmlsl_s8(_g0, _uu, _v22);
          int16x8_t _b0 = vmlal_s8(_yy0, _uu, _v113);
          
          int16x8_t _r1 = vmlal_s8(_yy1, _vv, _v90);
          int16x8_t _g1 = vmlsl_s8(_yy1, _vv, _v46);
          _g1 = vmlsl_s8(_g1, _uu, _v22);
          int16x8_t _b1 = vmlal_s8(_yy1, _uu, _v113);
          
          uint8x8x3_t _rgb0;
          _rgb0.val[0] = vqshrun_n_s16(_r0, 6);
          _rgb0.val[1] = vqshrun_n_s16(_g0, 6);
          _rgb0.val[2] = vqshrun_n_s16(_b0, 6);
          
          uint8x8x3_t _rgb1;
          _rgb1.val[0] = vqshrun_n_s16(_r1, 6);
          _rgb1.val[1] = vqshrun_n_s16(_g1, 6);
          _rgb1.val[2] = vqshrun_n_s16(_b1, 6);
          
          vst3_u8(rgb0, _rgb0);
          vst3_u8(rgb1, _rgb1);
          
          yptr0 += 8;
          yptr1 += 8;
          vuptr += 8;
          rgb0 += 24;
          rgb1 += 24;
       }
#else
       if (nn > 0)
       {
          asm volatile(
             "0:                             n"
             "pld        [%3, #128]          n"
             "vld1.u8    {d2}, [%3]!         n"
             "vsub.s8    d2, d2, %12         n"
             "pld        [%1, #128]          n"
             "vld1.u8    {d0}, [%1]!         n"
             "pld        [%2, #128]          n"
             "vld1.u8    {d1}, [%2]!         n"
             "vshll.u8   q2, d0, #6          n"
             "vorr       d3, d2, d2          n"
             "vshll.u8   q3, d1, #6          n"
             "vorr       q9, q2, q2          n"
             "vtrn.s8    d2, d3              n"
             "vorr       q11, q3, q3         n"
             "vmlsl.s8   q9, d2, %14         n"
             "vorr       q8, q2, q2          n"
             "vmlsl.s8   q11, d2, %14        n"
             "vorr       q10, q3, q3         n"
             "vmlal.s8   q8, d2, %13         n"
             "vmlal.s8   q2, d3, %16         n"
             "vmlal.s8   q10, d2, %13        n"
             "vmlsl.s8   q9, d3, %15         n"
             "vmlal.s8   q3, d3, %16         n"
             "vmlsl.s8   q11, d3, %15        n"
             "vqshrun.s16 d24, q8, #6        n"
             "vqshrun.s16 d26, q2, #6        n"
             "vqshrun.s16 d4, q10, #6        n"
             "vqshrun.s16 d25, q9, #6        n"
             "vqshrun.s16 d6, q3, #6         n"
             "vqshrun.s16 d5, q11, #6        n"
             "subs       %0, #1              n"
             "vst3.u8    {d24-d26}, [%4]!    n"
             "vst3.u8    {d4-d6}, [%5]!      n"
             "bne        0b                  n"
             : "=r"(nn),    // %0
             "=r"(yptr0), // %1
             "=r"(yptr1), // %2
             "=r"(vuptr), // %3
             "=r"(rgb0),  // %4
             "=r"(rgb1)   // %5
             : "0"(nn),
             "1"(yptr0),
             "2"(yptr1),
             "3"(vuptr),
             "4"(rgb0),
             "5"(rgb1),
             "w"(_v128), // %12
             "w"(_v90),  // %13
             "w"(_v46),  // %14
             "w"(_v22),  // %15
             "w"(_v113)  // %16
             : "cc", "memory", "q0", "q1", "q2", "q3", "q8", "q9", "q10", "q11", "q12", "d26");
          }
          
#endif // __aarch64__
#endif // __ARM_NEON

#define SATURATE_CAST_UCHAR(X) (unsigned char)::std::min(::std::max((int)(X), 0), 255);
       for (; remain > 0; remain -= 2)
       {
          // R = 1.164 * yy + 1.596 * vv
          // G = 1.164 * yy - 0.813 * vv - 0.391 * uu
          // B = 1.164 * yy              + 2.018 * uu
          
          // R = Y + (1.370705 * (V-128))
          // G = Y - (0.698001 * (V-128)) - (0.337633 * (U-128))
          // B = Y + (1.732446 * (U-128))
          
          // R = ((Y << 6) + 87.72512 * (V-128)) >> 6
          // G = ((Y << 6) - 44.672064 * (V-128) - 21.608512 * (U-128)) >> 6
          // B = ((Y << 6) + 110.876544 * (U-128)) >> 6
          
          // R = ((Y << 6) + 90 * (V-128)) >> 6
          // G = ((Y << 6) - 46 * (V-128) - 22 * (U-128)) >> 6
          // B = ((Y << 6) + 113 * (U-128)) >> 6
          
          // R = (yy + 90 * vv) >> 6
          // G = (yy - 46 * vv - 22 * uu) >> 6
          // B = (yy + 113 * uu) >> 6
          
          int v = vuptr[0] - 128;
          int u = vuptr[1] - 128;
          
          int ruv = 90 * v;
          int guv = -46 * v + -22 * u;
          int buv = 113 * u;
          
          int y00 = yptr0[0] << 6;
          rgb0[0] = SATURATE_CAST_UCHAR((y00 + ruv) >> 6);
          rgb0[1] = SATURATE_CAST_UCHAR((y00 + guv) >> 6);
          rgb0[2] = SATURATE_CAST_UCHAR((y00 + buv) >> 6);
          
          int y01 = yptr0[1] << 6;
          rgb0[3] = SATURATE_CAST_UCHAR((y01 + ruv) >> 6);
          rgb0[4] = SATURATE_CAST_UCHAR((y01 + guv) >> 6);
          rgb0[5] = SATURATE_CAST_UCHAR((y01 + buv) >> 6);
          
          int y10 = yptr1[0] << 6;
          rgb1[0] = SATURATE_CAST_UCHAR((y10 + ruv) >> 6);
          rgb1[1] = SATURATE_CAST_UCHAR((y10 + guv) >> 6);
          rgb1[2] = SATURATE_CAST_UCHAR((y10 + buv) >> 6);
          
          int y11 = yptr1[1] << 6;
          rgb1[3] = SATURATE_CAST_UCHAR((y11 + ruv) >> 6);
          rgb1[4] = SATURATE_CAST_UCHAR((y11 + guv) >> 6);
          rgb1[5] = SATURATE_CAST_UCHAR((y11 + buv) >> 6);
          
          yptr0 += 2;
          yptr1 += 2;
          vuptr += 2;
          rgb0 += 6;
          rgb1 += 6;
       }
#undef SATURATE_CAST_UCHAR

       yptr += 2 * w;
       rgb += 2 * 3 * w;
    }
}

基于G2D图形硬件的YUV转RGB

我们先实现 dmaion buffer 管理器,参考

framework/auto/sdk_lib/sdk_memory/DmaIon.cpp at develop-yt113-framework · MYIR-ALLWINNER/framework · GitHub

这里贴的代码省略了异常错误处理的逻辑,有个坑是 linux-4.9 和 linux-5.4 用法不一样,米尔电子的这个T113-i系统是linux-5.4,所以不兼容4.9内核的ioctl用法习惯

struct ion_memory
{
    size_t size;
    int fd;
    void* virt_addr;
    unsigned int phy_addr;
};

class ion_allocator
{
public:
    ion_allocator();
    ~ion_allocator();
    
    int open();
    void close();
    
    int alloc(size_t size, struct ion_memory* mem);
    int free(struct ion_memory* mem);
    
    int flush(struct ion_memory* mem);
    
public:
    int ion_fd;
    int cedar_fd;
};

    ion_allocator::ion_allocator()
{
    ion_fd = -1;
    cedar_fd = -1;
}

ion_allocator::~ion_allocator()
{
    close();
}

int ion_allocator::open()
{
    close();
    
    ion_fd = ::open("/dev/ion", O_RDWR);
    cedar_fd = ::open("/dev/cedar_dev", O_RDONLY);
    
    ioctl(cedar_fd, IOCTL_ENGINE_REQ, 0);
    
    return 0;
}

void ion_allocator::close()
{
    if (cedar_fd != -1)
    {
       ioctl(cedar_fd, IOCTL_ENGINE_REL, 0);
       ::close(cedar_fd);
       cedar_fd = -1;
    }
    
    if (ion_fd != -1)
    {
       ::close(ion_fd);
       ion_fd = -1;
    }
}

int ion_allocator::alloc(size_t size, struct ion_memory* mem)
{
    struct aw_ion_new_alloc_data alloc_data;
    alloc_data.len = size;
    alloc_data.heap_id_mask = AW_ION_SYSTEM_HEAP_MASK;
    alloc_data.flags = AW_ION_CACHED_FLAG | AW_ION_CACHED_NEEDS_SYNC_FLAG;
    alloc_data.fd = 0;
    alloc_data.unused = 0;
    ioctl(ion_fd, AW_ION_IOC_NEW_ALLOC, &alloc_data);
    
    void* virt_addr = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, alloc_data.fd, 0);
    
    struct aw_user_iommu_param iommu_param;
    iommu_param.fd = alloc_data.fd;
    iommu_param.iommu_addr = 0;
    ioctl(cedar_fd, IOCTL_GET_IOMMU_ADDR, &iommu_param);
    
    mem->size = size;
    mem->fd = alloc_data.fd;
    mem->virt_addr = virt_addr;
    mem->phy_addr = iommu_param.iommu_addr;
    
    return 0;
}

int ion_allocator::free(struct ion_memory* mem)
{
    if (mem->fd == -1)
        return 0;
        
        struct aw_user_iommu_param iommu_param;
        iommu_param.fd = mem->fd;
        ioctl(cedar_fd, IOCTL_FREE_IOMMU_ADDR, &iommu_param);
        
        munmap(mem->virt_addr, mem->size);
        
        ::close(mem->fd);
        
        mem->size = 0;
        mem->fd = -1;
        mem->virt_addr = 0;
        mem->phy_addr = 0;
        
        return 0;
}

int ion_allocator::flush(struct ion_memory* mem)
{
        struct dma_buf_sync sync;
        sync.flags = DMA_BUF_SYNC_END | DMA_BUF_SYNC_RW;
        ioctl(mem->fd, DMA_BUF_IOCTL_SYNC, &sync);
        
        return 0;
}

然后再实现 G2D图形硬件 YUV转RGB 的转换器

  1. 提前分配好YUV和RGB的dmaion buffer

  2. 将YUV数据拷贝到dmaion buffer,flush cache完成同步

  3. 配置转换参数,ioctl调用G2D_CMD_BITBLT_H完成转换

  4. flush cache完成同步,从dmaion buffer拷贝出RGB数据

  5. 释放dmaion buffer

// 步骤1
ion_allocator ion;
ion.open();

struct ion_memory yuv_ion;
ion.alloc(rgb_size, &rgb_ion);

struct ion_memory rgb_ion;
ion.alloc(yuv_size, &yuv_ion);

int g2d_fd = ::open("/dev/g2d", O_RDWR);

// 步骤2
memcpy((unsigned char*)yuv_ion.virt_addr, yuv420sp, yuv_size);
ion.flush(&yuv_ion);

// 步骤3
g2d_blt_h blit;
memset(&blit, 0, sizeof(blit));

blit.flag_h = G2D_BLT_NONE_H;

blit.src_image_h.format = G2D_FORMAT_YUV420UVC_V1U1V0U0;
blit.src_image_h.width = width;
blit.src_image_h.height = height;
blit.src_image_h.align[0] = 0;
blit.src_image_h.align[1] = 0;
blit.src_image_h.clip_rect.x = 0;
blit.src_image_h.clip_rect.y = 0;
blit.src_image_h.clip_rect.w = width;
blit.src_image_h.clip_rect.h = height;
blit.src_image_h.gamut = G2D_BT601;
blit.src_image_h.bpremul = 0;
blit.src_image_h.mode = G2D_PIXEL_ALPHA;
blit.src_image_h.use_phy_addr = 0;
blit.src_image_h.fd = yuv_ion.fd;

blit.dst_image_h.format = G2D_FORMAT_RGB888;
blit.dst_image_h.width = width;
blit.dst_image_h.height = height;
blit.dst_image_h.align[0] = 0;
blit.dst_image_h.clip_rect.x = 0;
blit.dst_image_h.clip_rect.y = 0;
blit.dst_image_h.clip_rect.w = width;
blit.dst_image_h.clip_rect.h = height;
blit.dst_image_h.gamut = G2D_BT601;
blit.dst_image_h.bpremul = 0;
blit.dst_image_h.mode = G2D_PIXEL_ALPHA;
blit.dst_image_h.use_phy_addr = 0;
blit.dst_image_h.fd = rgb_ion.fd;

ioctl(g2d_fd, G2D_CMD_BITBLT_H, &blit);

// 步骤4
ion.flush(&rgb_ion);
memcpy(rgb, (const unsigned char*)rgb_ion.virt_addr, rgb_size);

// 步骤5
ion.free(&rgb_ion);
ion.free(&yuv_ion);
ion.close();
::close(g2d_fd);

G2D图像硬件YUV转RGB测试

考虑到dmaion buffer分配和释放都比较耗时,我们提前做好,循环调用步骤3的G2D转换,统计耗时,并在top工具中查看CPU占用率

sh-4.4# LD_LIBRARY_PATH=. ./g2dtest
INFO   : cedarc <CedarPluginVDInit:84>: register mjpeg decoder success!
this device is not whitelisted for jpeg decoder cvi
this device is not whitelisted for jpeg decoder cvi
this device is not whitelisted for jpeg decoder cvi
this device is not whitelisted for jpeg encoder rkmpp
INFO   : cedarc <log_set_level:43>: Set log level to 5 from /vendor/etc/cedarc.conf
ERROR  : cedarc <DebugCheckConfig:316>: now cedarc log level:5
ERROR  : cedarc <VideoEncCreate:241>: now cedarc log level:5
yuv420sp2rgb 46.61
yuv420sp2rgb 42.04
yuv420sp2rgb 41.32
yuv420sp2rgb 42.06
yuv420sp2rgb 41.69
yuv420sp2rgb 42.05
yuv420sp2rgb 41.29
yuv420sp2rgb 41.30
yuv420sp2rgb 42.14
yuv420sp2rgb 41.33
yuv420sp2rgb_neon 10.57
yuv420sp2rgb_neon 7.21
yuv420sp2rgb_neon 6.77
yuv420sp2rgb_neon 8.31
yuv420sp2rgb_neon 7.60
yuv420sp2rgb_neon 6.80
yuv420sp2rgb_neon 6.77
yuv420sp2rgb_neon 7.01
yuv420sp2rgb_neon 7.11
yuv420sp2rgb_neon 7.06
yuv420sp2rgb_g2d 4.32
yuv420sp2rgb_g2d 4.69
yuv420sp2rgb_g2d 4.56
yuv420sp2rgb_g2d 4.57
yuv420sp2rgb_g2d 4.52
yuv420sp2rgb_g2d 4.54
yuv420sp2rgb_g2d 4.52
yuv420sp2rgb_g2d 4.58
yuv420sp2rgb_g2d 4.60
yuv420sp2rgb_g2d 4.67

可以看到 ARM neon 的优化效果非常明显,而使用G2D图形硬件能获得进一步加速,并且能显著降低CPU占用率!

耗时(ms)CPU占用率(%)
C41.3050
neon6.7750
g2d4.3212

转换结果对比和分析

C和neon的转换结果完全一致,但是g2d转换后的图片有明显的色差

G2D图形硬件只支持 G2D_BT601,G2D_BT709,G2D_BT2020 3种YUV系数,而JPG所使用的YUV系数是改版BT601,因此产生了色差

myir-t1-kernel/drivers/char/sunxi_g2d/g2d_bsp_v2.c at develop-yt113-L5.4.61 · MYIR-ALLWINNER/myir-t1-kernel · GitHub

从g2d内核驱动中也可以得知,暂时没有方法为g2d设置自定义的YUV系数,g2d不适合用于JPG的编解码,但依然适合摄像头和视频编解码的颜色空间转换

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/546133.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Selenium自动化测试网页加载太慢如何解决?

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 遇到网页加载慢&#xff0c;selenium运行效率降低&#xff0c;可以通过修改页面加载策略提升自动…

docker-compose yaml指定具体容器网桥ip网段subnet;docker创建即指定subnet;docker取消自启动

1、docker-compose yaml指定具体容器网桥ip网段subnet docker-compose 启动yaml有时可能的容器网段与宿主机的ip冲突导致宿主机上不了网&#xff0c;这时候可以更改yaml指定subnet 宿主机内网一般是192**&#xff0c;这时候容器可以指定172* version: 3.9 services:coredns:…

Django之rest_framework(四)

扩展的视图类介绍 rest_framework提供了几种后端视图(对数据资源进行增删改查)处理流程的实现,如果需要编写的视图属于这几种,则视图可以通过继承相应的扩展类来复用代码,减少自己编写的代码量 官网:3 - Class based views - Django REST framework rest_framework.mixi…

比特币突然暴跌

作者&#xff1a;秦晋 周末愉快。 今天给大家分享两则比特币新闻&#xff0c;也是两个数据。一则是因为中东地缘政治升温&#xff0c;传统资本市场的风险情绪蔓延至加密市场&#xff0c;引发加密市场暴跌。比特币跌至66000美元下方。杠杆清算金额高达8.5亿美元。 二则是&#x…

【Node.js】Express学习笔记(黑马)

目录 初识 ExpressExpress 简介Express 的基本使用托管静态资源nodemon Express 路由路由的概念路由的使用 Express 中间件中间件的概念Express 中间件的初体验中间件的分类 初识 Express Express 简介 什么是 Express&#xff1f; 官方给出的概念&#xff1a;Express 是基于…

书生·浦语大模型全链路开源体系-第3课

书生浦语大模型全链路开源体系-第3课 书生浦语大模型全链路开源体系-第3课相关资源RAG 概述在 InternLM Studio 上部署茴香豆技术助手环境配置配置基础环境下载基础文件下载安装茴香豆 使用茴香豆搭建 RAG 助手修改配置文件 创建知识库运行茴香豆知识助手 在茴香豆 Web 版中创建…

Windows 10明年退役

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、Windows 10 生命周期终止&#xff0c;收费预警二、收费标准&#xff1a;基于云的方式&#xff0c;使用 Windows 10 的 PC 也能接收 ESU高定价背后还是主推 …

如何查看个人大数据信用报告?查询报告哪家好呢?

大数据信用报告是现代社会中非常重要的信用评估工具&#xff0c;对于个人来说也具有非常重要的意义。那么&#xff0c;如何查看个人大数据信用报告?查询报告哪家好呢?本文将为您介绍。 首先&#xff0c;查看个人大数据信用报告需要了解报告的内容和格式 一般来说&#xff0c;…

vite+vue3+antDesignVue 记录-持续记录

记录学习过程 持续补充 每天的学习点滴 开始时间2024-04-12 1&#xff0c;报错记录 &#xff08;1&#xff09;env.d.ts文件 解决方法&#xff1a; 在env.d.ts文件中添加以下代码&#xff08;可以看一下B站尚硅谷的讲解视频&#xff09; declare module *.vue {import { Defi…

Hello算法11:排序

https://www.hello-algo.com/chapter_sorting/ 选择排序 初始未排序的区间是[0,n-1]在[0,n-1]中查找最小元素&#xff0c;和索引0交换&#xff0c;此时未排序的区间是[1,n-1]在[1,n-1]中查找最小元素&#xff0c;和索引1交换&#xff0c;此时未排序区间是[2,n-1]以此类推&…

Langchain-Chatchat在windows平台离线部署(1)

Langchain-Chatchat在windows平台离线部署&#xff08;1&#xff09; pwd的不兼容 在调用数据库初始化程序的时候&#xff0c;系统将会调用pebblo.py程序&#xff0c;在此程序中&#xff0c;需要调用基于linux平台的pwd程序。 在windows环境下&#xff0c;pwd模块不兼容&…

extends继承

目录 什么时候用继承? 继承的格式? 继承的特点 子类可以继承父类的哪些呢&#xff1f; 是否可以继承父类的构造方法呢&#xff1f; 是否可以继承成员变量&#xff1f; 是否可以继承成员方法&#xff1f; 在Java中&#xff0c;extends关键字用于实现继承关系。通过使用…

WInForm —— 自定义画板

项目模板:要实现在背景和无背景上完成画线&#xff0c;画直线、矩形、椭圆、并能随意调整字体的大小 首先要定义绘制的类型 enum DrawMode {None, // 没有选择绘制型Pen, // 画笔 画直线Line,// 画直线Rectangle,// 画矩形Ellipse, // 画椭圆Rubber // 橡皮擦 } //如果要想…

【Linux】进程的优先级及linux下进程的调度于切换

目录 ​编辑 1.优先级是什么 2.linux中的优先级是怎么实现的 ps -la 命令查看当前用户启动的进程​编辑 linux下调整优先级&#xff1a; ①先top一下 ②点击r ③需要输入进程的pid ④回车 ​编辑 ⑤输入想将优秀级修改的值&#xff1a; linux进程优先级范围为什么必须是【60,9…

Navicat的安装与破解

个人介绍 hello hello~ &#xff0c;这里是 code袁~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f981;作者简介&#xff1a;一名喜欢分享和记录学习的…

《系统分析与设计》实验-----需求规格说明书 哈尔滨理工大学

文章目录 需求规格说明书1&#xff0e;引言1.1编写目的1.2项目背景1.3定义1.4参考资料 2&#xff0e;任务概述2.1目标2.2运行环境2.3条件与限制 3&#xff0e;数据描述3.1静态数据3.2动态数据3.3数据库介绍3.4数据词典3.5数据采集 4&#xff0e;功能需求4.1功能划分4.2功能描述…

Java——封装、访问修饰符、包

目录 一.封装的概念 二.访问限定符 三.封装扩展之包 1.包的概念 2.导入包中的类 3.自定义包 4.包的访问权限控制举例 5.常见的包 一.封装的概念 面向对象程序三大特性&#xff1a;封装、继承、多态。而类和对象阶段&#xff0c;主要研究的就是封装特性。何为封装呢&am…

linux进阶篇:文件查找的利器——grep命令+管道操作详解

Linux文件查找的利器——grep命令管道操作详解 1 grep简介 grep (global search regular expression(RE) and print out the line,全面搜索正则表达式并把行打印出来)是一种强大的文本搜索工具&#xff0c;它能使用正则表达式搜索文本&#xff0c;并把匹配的行打印出来。 Uni…

Java面试八股文(更新中emsp;)(❤❤)

Java面试八股文 一. 基础篇1. Java语言特点2. 面向对象和面向过程的区别3. 八种基本数据类型的大小&#xff0c;以及他们的封装类4. 标识符的命名规则5. instanceof 关键字的作用6. Java自动装箱与拆箱面试题1&#xff1a; 以下代码会输出什么&#xff1f;面试题2&#xff1a;以…

Linux 网络测速

1.开发背景 网络测速&#xff0c;为了测试开发板的网络速度是否达标的通用测试方法 2.开发需求 搭建 iperf3 &#xff0c;在 ubuntu 下安装服务端&#xff0c;在板卡上安装客户端&#xff0c;服务端和客户端互发 3.开发环境 ubuntu20.04 嵌入式开发板&#xff08;debian 千…