数据可视化基础与应用-04-seaborn库人口普查分析--如何做人口年龄层结构金字塔

总结

本系列是数据可视化基础与应用的第04篇seaborn,是seaborn从入门到精通系列第3篇。本系列主要介绍基于seaborn实现数据可视化。

参考

参考:我分享了一个项目给你《seaborn篇人口普查分析–如何做人口年龄层结构金字塔》,快来看看吧

数据集地址
https://www.kesci.com/mw/project/5fde03b883e4460030a8dc3d/dataset

数据集介绍

2010年各地区分年龄,性别人口数据

背景描述
数据为中国2010年人口普查资料,包含2010年各地区分年龄、性别的人口,各地区分性别的户籍人口, 2010年(城市,乡村,镇)各地区分年龄、性别的人口

数据说明
1-7c 各地区分年龄、性别的人口(乡村).csv
1-7b 各地区分年龄、性别的人口(镇).csv
1-7a 各地区分年龄、性别的人口(城市).csv
1-3 各地区分性别的户籍人口.csv
各地区分年龄、性别的人口.csv
数据来源

中国2010年人口普查资料

问题描述
20年来出生男女比例变化?
男女找对象的合适年龄假设?初婚和再婚?
基于以上假设,哪个省份的男生以后找女朋友会越来越难?
结合结婚率、离婚率、民族、地域等信息,进一步猜测00后找女朋友的趋势变化

案例

#导入包
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
plt.style.use('fivethirtyeight')

from warnings import filterwarnings
filterwarnings('ignore')
#读取各地区分年龄、性别的人口
pcount = pd.read_csv('/home/kesci/input/GENDER8810/各地区分年龄、性别的人口.csv',skiprows=2)
"""
2010年各地区分年龄,性别人口数据
背景描述

数据为中国2010年人口普查资料,包含2010年各地区分年龄、性别的人口,各地区分性别的户籍人口, 2010年(城市,乡村,镇)各地区分年龄、性别的人口
数据说明

1-7c 各地区分年龄、性别的人口(乡村).csv
1-7b 各地区分年龄、性别的人口(镇).csv
1-7a 各地区分年龄、性别的人口(城市).csv
1-3 各地区分性别的户籍人口.csv
各地区分年龄、性别的人口.csv
"""

1. 探索性分析并处理数据

pcount.head()

输出为:
在这里插入图片描述

pcount.info()

输出为:
在这里插入图片描述

1.1 删除多余的列
#删除所有值为na的列 
pcount=pcount.dropna(axis=1,how='all') 
1.2 处理表头
def rename(frame):
    for i in range(frame.shape[1]):
        frame.iloc[1,0]='地区'
        if frame.iloc[1,i]=='小计':
            frame.iloc[1,i]='小计'+ '_'+str(frame.iloc[0,i])
        elif frame.iloc[1,i]=='男':
            frame.iloc[1,i]='男' + '_' + str(frame.iloc[0,i-1])
        elif frame.iloc[1,i]=='女':
            frame.iloc[1,i]='女' + '_' + str(frame.iloc[0,i-2])

    
rename(pcount)
pcount.head()

输出为:
在这里插入图片描述

1.3 透视数据
pcount.columns = pcount.iloc[1,]
pcount.columns

输出为:
在这里插入图片描述

pcount = pcount.iloc[2:,:]
pcount

输出为:
在这里插入图片描述

pcounts = pcount.set_index("地区").stack().reset_index()
pcounts

输出为:
在这里插入图片描述

pcounts.columns = ['地区','类别','统计人数']
pcounts

输出为:
在这里插入图片描述

1.4 处理空格(数据量大的话不建议这么做)
def replace_r(frame):
    for i in range(frame.shape[0]):
        frame.iloc[i,0] = frame.iloc[i,0].replace(" ",'')
        frame.iloc[i,1] = frame.iloc[i,1].replace(" ",'')
        
replace_r(pcounts)
pcounts

输出为:
在这里插入图片描述

1.5 增加统计列
pcounts['年龄段'] = pcounts['类别'].str.split('_').str[-1]
pcounts['性别'] = pcounts['类别'].str.split('_').str[0]
#将统计人数转换为数值
pcounts['统计人数']=pcounts['统计人数'].astype('int')

2. 可视化部分

2.1 我国人口总数
plt.figure(1,figsize=(16,6))
plt.subplot(1,2,1)
sns.barplot(y=['全国人口总数','男性人口总数','女性人口总数'],x=[1337376754,687562046,649814708],color='CadetBlue')
plt.title("全国人口总数",loc='left')
plt.xticks(fontsize=12)
plt.yticks(fontsize=13)

plt.subplot(1,2,2)
patches,l_text,p_text=plt.pie([687562046,649814708],labels=['男性','女性'],
       autopct='%.2f%%',colors=['CadetBlue','DarkSalmon'],explode=[0,0.05],startangle=90)
plt.title('不同性别占全国人口总数的百分比')
plt.axis('equal')
plt.show()

输出为:
在这里插入图片描述

2.1 人口年龄结构金字塔(左边女右边男)
result = pcounts[(pcounts['性别'].isin(['男','女']))&(pcounts['地区']=='全国')&(pcounts['年龄段']!='合计')]
result

输出为:
在这里插入图片描述

result['人口占比'] =( result['统计人数']/result['统计人数'].sum()*100).round(2)
result

输出为:
在这里插入图片描述

# 女性占比
-result[result['性别']=='女']['人口占比'].values

输出为:
在这里插入图片描述

plt.figure(figsize=(12,8))

bar_plot = sns.barplot(y = result['年龄段'].unique(), x = -result[result['性别']=='女']['人口占比'].values, color = "DarkSalmon", 
                       data = result,order = result['年龄段'].unique()[::-1],)
bar_plot = sns.barplot(y = result['年龄段'].unique(), x = result[result['性别']=='男']['人口占比'].values, color = "CadetBlue",
                       data = result,order = result['年龄段'].unique()[::-1],)

plt.xticks([-5,-3,-1,0,1,3,5],[5,3,1,0,1,3,5])
# plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = True
bar_plot.set(xlabel="人口占比(%)", ylabel="年龄层", title = "2010中国人口普查年龄结构金字塔")
plt.show()

输出为:
在这里插入图片描述

2.2 差异
data = {'index': result['年龄段'].unique(),
        '男': result[result['性别']=='男']['人口占比'].values,
        '女': result[result['性别']=='女']['人口占比'].values,
        }
Data = pd.DataFrame(data)
Data['差异']=Data['男']-Data['女']
plt.figure(1,figsize=(12,8))
sns.lineplot(x=Data['index'],y=Data['差异'],color='DarkSalmon')
plt.xlabel("年龄层")
plt.ylabel("人口占比(%)")
plt.title("各年龄层的 男 VS 女(占比)的差异")
plt.xticks(rotation=35)
plt.show()

输出为:
在这里插入图片描述

2.3 北京、上海、广东地区的人口年龄结构金字塔(左边女右边男)
plt.figure(1,figsize=(18,16))
n = 0
for x in ['北京','上海','广东']:
    result = pcounts[(pcounts['性别'].isin(['男','女']))&(pcounts['地区'] == x )&(pcounts['年龄段']!='合计')]
    result['人口占比'] =( result['统计人数']/result['统计人数'].sum()*100).round(2)
    n +=1
    plt.subplot(2,3,n)
    bar_plot = sns.barplot(y = result['年龄段'].unique(), x = -result[result['性别']=='女']['人口占比'].values, color = "DarkSalmon", 
                       data = result,order = result['年龄段'].unique()[::-1],)
    bar_plot = sns.barplot(y = result['年龄段'].unique(), x = result[result['性别']=='男']['人口占比'].values, color = "CadetBlue",
                       data = result,order = result['年龄段'].unique()[::-1],)

    plt.xticks([-7,-5,-3,-1,0,1,3,5,7],[7,5,3,1,0,1,3,5,7])
    plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
    plt.rcParams['axes.unicode_minus'] = True
    bar_plot.set(xlabel="人口占比(%)", ylabel="年龄层", title = x )
    plt.ylabel('')
plt.show()   

输出为:
在这里插入图片描述

上图这三个地区还是比较突出的但不容易看出男女差异,我们再来一个性别的对比图

plt.figure(1,figsize=(18,16))
n = 0
for x in ['北京','上海','广东']:
    result = pcounts[(pcounts['性别'].isin(['男','女']))&(pcounts['地区'] == x )&(pcounts['年龄段']!='合计')]
    n +=1
    plt.subplot(2,3,n)
    sns.barplot(x='统计人数',y='年龄段',hue='性别',data=result,palette=['CadetBlue','DarkSalmon'],order=result['年龄段'].unique()[::-1])
    plt.title(x)
    plt.xticks(rotation=35)
    plt.ylabel('')
plt.show()

输出为:
在这里插入图片描述

不难发现这三个地区的男女比例失衡,在中青年这个年龄段较为严重

2.4 人口分布地图
result1 = pcounts[(pcounts['性别']=='小计')&(pcounts['地区']!='全国')&(pcounts['年龄段']!='合计')]
result1

输出为:
在这里插入图片描述

result2 = result1.groupby('地区')['统计人数'].sum().reset_index(name='统计人数')
result2

输出为:
在这里插入图片描述

# pip install pyecharts
# from pyecharts.globals import CurrentConfig,OnlineHostType
# CurrentConfig.ONLINE_HOST = OnlineHostType.NOTEBOOK_HOST
from pyecharts.charts import Map
from pyecharts import options as opts
x_data = result2['地区'].tolist()
y_data = result2['统计人数'].tolist()
x_data

输出为:
在这里插入图片描述

name_translate = {"宁夏回族自治区":"宁夏","河南省":"河南","北京市":"北京","河北省":"河北","辽宁省":"辽宁","江西省":"江西",
"上海市":"上海","安徽省": "安徽","江苏省":"江苏","湖南省":"湖南","浙江省":"浙江","海南省":"海南",
"广东省":"广东","湖北省":"湖北", "黑龙江省": "黑龙江","陕西省":"陕西","四川省":"四川","内蒙古自治区":"内蒙古",
"重庆市":"重庆","广西壮族自治区":"广西","云南省":"云南","贵州省":"贵州","吉林省":"吉林","山西省":"山西",
"山东省":"山东","福建省":"福建","青海省":"青海","天津市":"天津","新疆维吾尔自治区":"新疆","西藏自治区":"西藏",
"甘肃省":"甘肃","大连市":"大连", "东莞市":"东莞","宁波市":"宁波","青岛市":"青岛","厦门市":"厦门","台湾省":" ","澳门特别行政区":" ",
"香港特别行政区":" ","南海诸岛":" "}
# 地图
map1 = Map()
map1.add("", [list(z) for z in zip(x_data, y_data)],"china",name_map=name_translate) 
map1.set_series_opts(label_opts=opts.LabelOpts(is_show=True))
map1.set_global_opts(title_opts=opts.TitleOpts(title='全国各地区人口分布'),
visualmap_opts=opts.VisualMapOpts( max_=result2['统计人数'].max(),
min_ =result2['统计人数'].min(),is_piecewise=False))
map1.render_notebook() 

输出为:
在这里插入图片描述

2010年的人口普查数据显示:广东省、山东省、河南省、四川省、江苏省 是总人口数前 5 的地区

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/544357.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【题目】【信息安全管理与评估】2022年国赛高职组“信息安全管理与评估”赛项样题5

【题目】【信息安全管理与评估】2022年国赛高职组“信息安全管理与评估”赛项样题5 第一阶段竞赛项目试题 本文件为信息安全管理与评估项目竞赛-第一阶段试题,第一阶段内容包括:网络平台搭建与设备安全防护。 本次比赛时间为180分钟。 介绍 竞赛阶段…

Unity 人形骨骼动画模型嘴巴张开

最近搞Daz3D玩,导入后挂上动画模型嘴巴张开,其丑无比。 Google了一下,得知原因是Unity没有对下巴那根骨骼做控制,动画系统就会把它放到默认的位置,嘴巴就张开了。找到了3种解决办法。 1.移除动画中对下巴这个骨骼的转…

简单认识Git(dirsearch、githack下载),git泄露(ctfhub)

目录 dirsearch下载地址: githack下载(一次不成功可多试几次) 一、什么是Git 1.git结构 2.git常用命令及示例 3.Git泄露原理 二、Git泄露 1.Log 2.Stash 3.Index 工具准备:dirsearch、githack dirsearch下载地址: GitHub - mauroso…

数据库SQL语言实战(二)

目录 检索查询 题目一 题目二 题目三 题目四 题目五 题目六 题目七 题目八 题目九(本篇最难的题目) 分析 实现(两种方式) 模板 总结 检索查询 按照要求查找数据库中的数据 题目一 找出没有选修任何课程的学…

02 MySQL 之 DQL专题

3. 数据库中仅有月薪字段(month_salary),要求查询所有员工的年薪,并以年薪(year_salary)输出: 分析: 查询操作中,字段可以参与数学运算as 起别名,但实际上可以省略 #以下两句效果…

深入了解数据结构第四弹——排序(1)——插入排序和希尔排序

前言: 从本篇开始,我们就开始进入排序的学习,在结束完二叉树的学习之后,相信我们对数据在内存中的存储结构有了新的认识,今天开始,我们将进入排序的学习,今天来学习第一篇——插入排序 目录 什…

使用DockerCompose安装Redis

本文使用docker-compose的方式安装Redis,如何未安装docker-compose,可以参考这篇文章进行安装【在Ubuntu上安装Docker Compose】 一、创建一个DockerCompose配置文件 第一步:创建相关目录文件 为了更好的组织管理Docker容器的配置文件和映射…

毕业后个人档案如何查询

毕业后个人档案查询通常需要在所在学校的学籍管理部门或学生事务处进行查询。具体步骤如下: 1. 准备相关材料:身份证或护照复印件,毕业证书复印件,学号等相关信息。 2. 前往学校学籍管理部门或学生事务处,咨询个人档案…

C语言中局部变量和全局变量是否可以重名?为什么?

可以重名 在C语言中, 局部变量指的是定义在函数内的变量, 全局变量指的是定义在函数外的变量 他们在程序中的使用方法是不同的, 当重名时, 局部变量在其所在的作用域内具有更高的优先级, 会覆盖或者说隐藏同名的全局变量 具体来说: 局部变量的生命周期只在函数内部,如果出了…

专业140+总分410+北京理工大学826信号处理导论考研经验北理工电子信息通信工程,真题,参考书,大纲。

今年考研专业课826信号处理导论(信号系统和数字信号处理)140,总分410,顺利上岸!回看去年将近一年的复习,还是记忆犹新,有不少经历想和大家分享,有得有失,希望可以对大家复…

[管理者与领导者-163] :团队管理 - 高效执行力 -1- 高效沟通的架构、关键问题、注意事项

目录 前言:沟通是管理者实施管理最重要的工作 一、人与人沟通模型 1.1 模型 1.2 完整过程 1.3 发送和接受方式 1.4 传输 1.5 关于编码与解码 1.6 反馈 1.7 沟通中常见问题 二、管理者如何提高沟通的效率 2.1 为什么管理者布置任务后,总有人…

HarmonyOS实战开发-状态管理、通过使用页面级的状态变量 和应用级的状态变量 来实现应用的状态管理。

介绍 本示例通过使用页面级的状态变量 和应用级的状态变量 来实现应用的状态管理。 效果预览 使用说明 1.点击首页中的基本类型进入对应页面,点击按钮可以更改圆形的颜色;点击查看源码可以展示基本类型功能效果的源码。 2.点击首页中的数组类型进入对…

微信小程序实现预约生成二维码

业务需求&#xff1a;点击预约按钮即可生成二维码凭码入校参观~ 一.创建页面 如下是博主自己写的wxml&#xff1a; <swiper indicator-dots indicator-color"white" indicator-active-color"blue" autoplay interval"2000" circular > &…

为什么光伏探勘测绘需要无人机?

随着全球对可再生能源需求的不断增长&#xff0c;光伏产业也迎来了快速发展的机遇。光伏电站作为太阳能发电的主要形式之一&#xff0c;其建设前期的探勘测绘工作至关重要。在这一过程中&#xff0c;无人机技术的应用正逐渐展现出其独特的优势。那么&#xff0c;为什么光伏探勘…

【数据结构】4.List的介绍

目录 1.什么是List 2.常见接口介绍 3.List的使用 1.什么是List 在集合框架中&#xff0c;List是一个接口&#xff0c;继承自Collection。 Collection也是一个接口&#xff0c;该接口中规范了后序容器中常用的一些方法&#xff0c;具体如下&#xff1a; Iterable也是一个接口…

HashMap扩容原理(带源码分析)

HashMap的扩容原理 1.扩容流程图 注&#xff1a;拆分链表的规则 这里拆分链表时的一个比较&#xff1a;e.hash & oldCap 0 意思是&#xff1a;某一个节点的hash值和老数组容量求&运算。如果等于0&#xff0c;当前元素在老数组中的位置就是在新数组中的位置。如果不等…

使用新一代一站式 AI Bot 开发平台扣子coze,搭建我的第一个AI Bot(前端魔法师) ,

目录 1.概述​ 2.功能与优势 3.使用扣子 4.人设与回复逻辑 5.添加插件 6.预览与调试 7.发布bot Store 8.环境大家体验&#xff08;给大家内置了比较屌的插件&#xff09; 9.推荐阅读&#xff1a; 1.概述​ 扣子是新一代一站式 AI Bot 开发平台。无论你是否有编程基础…

面试经典算法系列之二叉树7 -- 二叉树的中序遍历

面试经典算法22 - 二叉树的中序遍历 LeetCode.94 公众号&#xff1a;阿Q技术站 问题描述 给定一个二叉树的根节点 root &#xff0c;返回 它的 中序 遍历 。 示例 1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&#xff1a;[1,3,2]示例 2&#xff1a; 输入&…

【鸿蒙开发】第二十一章 Media媒体服务(二)--- 音频播放和录制

1 AVPlayer音频播放 使用AVPlayer可以实现端到端播放原始媒体资源&#xff0c;本开发指导将以完整地播放一首音乐作为示例&#xff0c;向开发者讲解AVPlayer音频播放相关功能。 以下指导仅介绍如何实现媒体资源播放&#xff0c;如果要实现后台播放或熄屏播放&#xff0c;需要…

稀碎从零算法笔记Day48-LeetCode:三角形最小路径和

题型&#xff1a;DP、二维DP、矩阵 链接&#xff1a;120. 三角形最小路径和 - 力扣&#xff08;LeetCode&#xff09; 来源&#xff1a;LeetCode 题目描述 给定一个三角形 triangle &#xff0c;找出自顶向下的最小路径和。 每一步只能移动到下一行中相邻的结点上。相邻的…