OpenCV轻松入门(六)——简单图片处理【马赛克、毛玻璃、浮雕效果】

马赛克效果

马赛克指现行广为使用的一种图像(视频)处理手段,此手段将影像特定区域的色阶细节劣化并造成色块打乱的效果,因为这种模糊看上去有一个个的小格子组成,便形象的称这种画面为马赛克。其目的通常是使之无法辨认。

下面,我们来介绍一下实现马赛克的思路!

假设我们将要打马赛克的区域按照4x4进行划分,我们就会得到如下左图的样子!

接下来我们要干的就是让这个4x4块内的所有像素点的颜色值都和第一个像素点的值一样.

经过运算之后,我们整个4x4块内的所有像素点就都成了黄色! 从而掩盖掉了原来的像素内容!

 代码实现:

import cv2
import matplotlib.pyplot as plt
def imgshow(img):
    img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    plt.imshow(img)
    plt.show()

import numpy as np
img = cv2.imread("/Users/guojun/Desktop/01.jpg")
shape = img.shape
masaike_img = np.copy(img)
offset=10
for row in range(0,shape[0],offset):
    for col in range(0,shape[1],offset):
        color = img[row,col]
        masaike_img[row:row+offset,col:col+offset]=color
        
imgshow(masaike_img)

毛玻璃效果

毛玻璃的效果和我们前面讲过的马赛克效果其实是非常相似的, 只不过毛玻璃效果是从附近的颜色块中,随机的去选择一个颜色值作为当前像素点的值!

我们还是以4x4的块大小为例,当我们去遍历每个像素点的时候, 当前像素点的颜色值,我们随机从它附近4x4的区域内选择一个颜色值作为当前像素点的值!

代码实现

import cv2
import matplotlib.pyplot as plt
def imgshow(img):
    img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    plt.imshow(img)
    plt.show()

import numpy as np
import random
img = cv2.imread("/Users/guojun/Desktop/01.jpg")
shape = img.shape
maoboli_img = np.copy(img)
for row in range(shape[0]):
    for col in range(shape[1]):
        offset = random.randint(0,10)
        color_row = row+offset
        color_col = col+offset
        if color_row>= shape[0]:
            color_row=shape[0]-1
        if color_col>=shape[1]:
            color_col=shape[1]-1
        color = img[color_row,color_col]
        maoboli_img[row,col] = color
imgshow(maoboli_img)

浮雕效果

梯度

前面我们做过一个毛玻璃效果的图片, 其实原理很简单对吧,我们只需要让当前像素点的颜色和附近像素点的颜色一致就可以了! 这样带来的效果其实是图片变得模糊.

那么模糊图片和清晰图片之间的差异是什么呢? 从视觉角度来讲, 图像模糊是因为图像中物体的边缘轮廓不明显,就好比一个近视的同学,摘下眼镜看东西,整个世界的轮廓都是模糊的. 再进一步理解就是物体边缘灰度变化不强烈,层次感不强造成的! 那么反过来, 如果物体轮廓边缘灰度变化明显些, 层次感强些图像不就是清晰一些了吗?

这种灰度变化明不明显强不强烈该如何定义呢 ? 我们学过微积分, 微分就是求函数的变化率,即导数(梯度). 其实梯度我们可以把它理解为颜色变化的强度, 更直白一点说梯度相当于是2个相邻像素之间的差值!

我们先看第一行数据, 在X轴方向上,颜色值都为100,我们并没有看到任何的边缘

但是在Y轴方向上, 我们可以看到100和50之间有明显的边缘,其实这个就是梯度

浮雕效果相信大家都有比较熟悉,在opencv中我们想要实现浮雕效果,只需套用如下公式即可:

gray = gray0-gray1+120

其中,相邻像素值之差可以体现边缘的突变或者称为梯度

末尾加上120只是为了增加像素值的灰度.

当然,在这个运算的过程中,我们还需要注意计算结果有可能小于0或者大于255

代码实现 
import cv2
import matplotlib.pyplot as plt
def imgshow(img):
    img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    plt.imshow(img)
    plt.show()

import numpy as np
import random
img = cv2.imread("/Users/guojun/Desktop/01.jpg",cv2.IMREAD_COLOR)
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
width,height = img.shape
print(width,height)
fudiao_img = np.zeros_like(img)
for row in range(width):
    for col in range(height-1):
        gray0 = img[row,col]
        gray1 = img[row,col+1]
        gray = int(gray0)-int(gray1)+120
        if gray<0:
            gray = 0 
        if gray>255:
            gray = 255
        fudiao_img[row,col] = gray

imgshow(fudiao_img)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/541625.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

linux 部署安装mongodb教程

现在去官网下载mongodb的tar包,在本地创建文件夹 cd /home wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-4.2.17.tgz tar -zxvf mongodb-linux-x86_64-rhel70-4.2.17.tgz mv mongodb-linux-x86_64-rhel70-4.2.17 mongodb cd /home/mongodb mkdir log t…

window10轻松使用k8s

Docker Desktop安装篇 1、win10安装 1、下载安装包 https://www.docker.com/products/docker-desktop/ 官网下载安装包 2、配置win10支持虚拟化 不勾选Hyper-V&#xff0c;容易出错 3、安装WSL配置window支持linux Windows Subsystem for Linux (WSL) 安装 Linux 子系统&am…

腐蚀Rust 服务端搭建架设个人社区服务器Windows教程

腐蚀Rust 服务端搭建架设个人社区服务器Windows教程 大家好我是艾西&#xff0c;一个做服务器租用的网络架构师也是游戏热爱者。最近在steam发现rust腐蚀自建的服务器以及玩家还是非常多的&#xff0c;那么作为服务器供应商对这商机肯定是不会放过的哈哈哈&#xff01; 艾西这…

嵌入式实时操作系统的调度机制与优化

大家好&#xff0c;今天给大家介绍嵌入式实时操作系统的调度机制与优化&#xff0c;文章末尾附有分享大家一个资料包&#xff0c;差不多150多G。里面学习内容、面经、项目都比较新也比较全&#xff01;可进群免费领取。 嵌入式实时操作系统的调度机制与优化 一、引言 嵌入式实…

DonkeyDocker-v1-0渗透思路

MY_BLOG https://xyaxxya.github.io/2024/04/13/DonkeyDocker-v1-0%E6%B8%97%E9%80%8F%E6%80%9D%E8%B7%AF/ date: 2024-04-13 19:15:10 tags: 内网渗透Dockerfile categories: 内网渗透vulnhub 靶机下载地址 https://www.vulnhub.com/entry/donkeydocker-1,189/ 靶机IP&a…

[Java、Android面试]_18_详解Handler机制 常见handler面试题(非常重要,非常高频!!)

本人今年参加了很多面试&#xff0c;也有幸拿到了一些大厂的offer&#xff0c;整理了众多面试资料&#xff0c;后续还会分享众多面试资料。 整理成了面试系列&#xff0c;由于时间有限&#xff0c;每天整理一点&#xff0c;后续会陆续分享出来&#xff0c;感兴趣的朋友可关注收…

Java基础-知识点04(面试|学习)

Java基础-知识点04 Object类wait和notify需要在什么地方使用&#xff1f;说明 toString() 方法的作用和重写时的注意事项。toString() 方法在实际开发中的应用场景和作用。 continue、break 和 return 的区别1、continue&#xff1a;2、break&#xff1a;3、return&#xff1a;…

plsql developer 一键格式化sql/美化sql

PL/SQL 格式化工具 以 Oracle SQL Developer 为例&#xff0c;使用一键格式化的步骤如下&#xff1a; 打开 Oracle SQL Developer。在“文件”菜单中&#xff0c;选择“打开文件”&#xff0c;然后选择你的 PL/SQL 文件。打开文件后&#xff0c;你可以通过右键菜单选择“格式…

常用接口测试工具/免费api

一 接口编辑文档 常用的接口文档编写apipost 二 免费接口测试 api 1. thecat 含有&#xff1a; The Cat API - Cat as a Service The Cat API 2. public-apis 进入页面往下拉 三 常用接口测试工具 postman 四 常用接口性能测试工具 Jmeter&#xff0c;loadrunner

STK与matlab交互 Astrogator模块 (11)

一、背景知识 前面由于定轨的大作业&#xff0c;关于Astrogator模块的学习有所滞后&#xff0c;在本节将重新聚焦Astrogator模块&#xff0c;在本节中&#xff0c;首先解决的问题是已知两个卫星的轨道六根数&#xff0c;求解其中某一颗卫星LVLH坐标下另一颗卫星的位置速度。这…

C语言中的编译和链接

系列文章目录 文章目录 ​编辑 系列文章目录 文章目录 前言 一、 翻译环境和运行环境 二、 翻译环境 2.1 编译 2.1.1 预处理 2.1.2 编译 2.1.2.1 词法分析 : 2.1.2.2 语法分析 2.1.2.3 语义分析 2.1.3 汇编 2.2 链接 三、运行环境 前言 在我们平常的写代码时&#xff0c;我们很…

ARM内核的CPU架构模型

1.引言 程序员在编码的时候&#xff0c;如果想有进一步的提升&#xff0c;我认为还是要深入底层理解程序运行原理才好。最近看了一些ARM架构的讲解&#xff0c;总结了如下。虽然是以ARM为原型画的图形&#xff0c;但是对于C和C的编程&#xff0c;还是有一些参考价值的。 2. AR…

SAP HCM GET pernr无法获取到数据二

今天遇到一个比较奇怪的问题&#xff0c;PA30能查到员工主数据&#xff0c;任何信息类型也没有错误&#xff0c;但是核算工资的时候发现无法找到此人。 但是核算工资无法核算 断点到逻辑数据get pernr&#xff0c;也不会进入断点 查看0000数据有间隔 具体错误的代码位置如下&am…

rspack 使用构建vue3脚手架

基于 Rust 的高性能 Web 构建工具。rspack 主要适配 webpack 生态&#xff0c;对于绝大多数 webpack 工具库都是支持的。 启动速度快&#xff1b;增量热更新快。兼容 webpack 生态&#xff1b;内置了 ts、jsx、css、css modules 等开箱即用。生产优化&#xff0c;tree shaking…

【蓝桥杯】第十五届填空题a.握手问题

题解&#xff1a; 根据问题描述&#xff0c;总共有 50 人参加会议&#xff0c;每个人除了与自己以外的其他所有人握手一次。但有 7 个人彼此之间没有进行握手&#xff0c;而与其他所有人都进行了握手。 首先&#xff0c;计算所有人进行握手的总次数&#xff1a; 总人数为 50 …

计算机服务器中了360后缀勒索病毒怎么办?360后缀勒索病毒解密步骤

网络技术的不断应用与发展&#xff0c;为企业的生产运营提供了极大便利&#xff0c;利用网络可以开展各项工作业务&#xff0c;可以大大提高企业的生产效率&#xff0c;然而&#xff0c;网络是一把双刃剑&#xff0c;在为企业提供便利的同时&#xff0c;也为企业的数据安全带来…

Go——Channel通道

一.介绍 单纯的将函数并发执行是没有意义的。函数和函数之间需交换数据才能体现并发执行函数的意义。 虽然可以使用共享内存来进行数据交换&#xff0c;但是共享内存在不同的goroutine中容易发送竞态问题。为了保证数据交换的正确性&#xff0c;必须使用互斥量对内存进行加锁&a…

树莓派驱动开发--搭建环境篇(保姆级)

前言&#xff1a;树莓派的环境搭建关系到之后的驱动开发&#xff0c;故一个好的环境能让你顺手完成驱动开发&#xff01;我使用的是64位树莓派4b&#xff01;有显示屏的前提&#xff01;&#xff01;&#xff01;&#xff08;因为wifi连接太刁钻了&#xff09; 一、ubantu相关 …

(一)基于IDEA的JAVA基础14

在看今天的重点二维数组前&#xff0c;先做俩个练习复习一下&#xff0c;热热脑子: 求数组内的最大值/最小值 这个就是挨个比较换一下位置 假设有这么一组数组{16,48,48,54,3} public class Test01 { public static void main(String[] args) { int [] num {16,48,54,3}; …

【力扣】148. 排序链表

148. 排序链表 题目描述 给你链表的头结点 head &#xff0c;请将其按 升序 排列并返回 排序后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [4,2,1,3] 输出&#xff1a;[1,2,3,4] 示例 2&#xff1a; 输入&#xff1a;head [-1,5,3,4,0] 输出&#xff1a;[-1,0,…