建筑业AI的崛起

建筑领域完全可以从机器学习和人工智能(AI)的出现中受益。

本文总结了这一领域的发展,并介绍了人们可以准备从这项技术中实现价值最大化的一些方法,包括对人工智能和机器学习在建筑中的一些应用及其潜在影响的广泛调查。 这些流程正在各个领域发生变化,包括风险管理、进度管理、分包商管理、施工现场环境监控和安全等。

1、人工智能是什么意思?

公众对AI的看法通常介于两个极端之间:一是让它统治世界,二是被认为是幻想,在严肃的对话中没有立足之地。 事实上,事实介于两者之间,人工智能远不是一种超级智能,而是一个已经找到了巨大应用的研究分支,并且是当今技术应用的一个重要驱动因素。

传统上,定义人工智能一直是一个挑战。 “人工”是定义中更容易的部分,它可以简单地意味着“不是自然发生的”。另一方面,“智能”却让研究人员陷入了几个兔子洞。 一般来说,人工智能指的是一个广泛的科学领域,涵盖从计算机科学、心理学到哲学和语言学等一系列学科。 它主要涉及让计算机完成通常需要人类智能的任务。 本系列文章提供了更深入的阅读来理解人工智能的定义和历史。

现在,人工智能的更广泛范围内有许多工作领域,但在这里我想定义两个更受欢迎的领域 ——机器学习和深度学习。 机器学习就是这样一个子集,它涉及编写算法,使计算机无需显式编程即可从数据中学习。 例如,如果您想编写一个算法来识别电子邮件中的垃圾邮件,则必须通过将其暴露于许多手动标记为垃圾邮件或非垃圾邮件的电子邮件示例来训练该算法。 该算法“学习”识别模式,例如某些单词或单词组合的出现,从而确定电子邮件是垃圾邮件的可能性。

深度学习可以被认为是机器学习范畴内的一组专门技术,最近才真正发展起来。 它们基于神经网络,这是一种模拟人脑神经元的机器学习算法。 深度学习在图像和语言处理领域取得了多项突破,使家庭助理和自动驾驶汽车等高级应用成为可能。

2、影响因素

人工智能作为一个学术领域已经存在很长时间了,第一次关于该主题的会议于 1956 年举行。但在过去的十年里,它更加受到人们的关注。 这可以归因于几个因素,这些因素最近本身已经有了很大改善。 所有人工智能都需要提供大量数据来支持从中得出的见解,并且在过去几年中生成的数据量大幅增加。 据 IBM 博客称,几年前,90% 的数据是在最近两年创建的。 我想今天这个比例可以延伸到 95% 左右。 随着数据的增加,可用于分析这些数据的计算能力每年都呈指数级增长,而计算能力的成本却在下降。 如今,几乎所有数据都驻留在云中,并且考虑到处理这些数据的资源的可用性,我们看到大量应用程序专注于根据从该分析中获得的见解做出更好的决策。

3、人工智能的应用

开始了解人工智能应用范围的一个好方法是检查它已经变得多么普遍。 我们每天都会收到几封电子邮件,而且大多数人花在上面的时间比我们想要的要多。 但是,您是否注意到令人发指的垃圾邮件数量已变得多么少? 五年前,您每周至少会收到一封电子邮件,声称您中了彩票。 垃圾邮件检测是机器学习最古老且更知名的应用之一。 通过查看数千封电子邮件,计算机程序已经能够“了解”垃圾邮件通常是什么样子。 它可以了解到发件人不太可能向您发送电子邮件,或者从电子邮件的文本中得知内容很可能是欺诈性的。 这只是文本处理的一个示例。

另一个发展领域是图像分析。 这个空间中的问题可以简化为两大类:识别图像所代表的内容,然后识别对象在图像中的确切位置。 例如,给定一张照片,照片中有猫吗? 第二个挑战是你能否检测出图像中猫的具体位置?

随着深度学习的发展,这一领域已经取得了多项突破。 新款 iPhone 不再只检测猫,还配备了基于人脸检测的锁定功能。 这些算法能够区分照片的更精细的细节,并且速度足够快,可以用来做出实时决策。 这些算法原本是检测照片中是否有猫,但现在它们实际上可以告诉你每张照片中是否是同一只猫。

当这些图像识别和检测算法与其他形式的人工智能相结合时,您将获得令人着迷的应用程序,例如自动驾驶汽车。 他们能够感知周围的环境并利用它来导航环境。 理解环境中的不同对象、理解它们行为或操作方式的差异以及它们在环境中隐含的规则是一项复杂的任务。 下图是自动驾驶汽车用于导航的视图示例。 该系统能够区分人、汽车、静止物体。 它必须理解红灯和单向标志的含义。 它能够估计物体之间的距离并用它来做出决定。 这篇文章提供了有关它们的制作方式及其背后的技术的更深入的交互式阅读。

人类大脑在做出决定时能够处理大约三到四个不同的数据点。 这是人工智能取得进展的另一个领域。 虽然人类大脑只能处理三到四个维度,但人工智能算法却没有限制。 当你狂看 Netflix 推荐的节目时,他们的推荐引擎可能会考虑很多不同的事情; 您的年龄、性别、该个人资料的其他人喜欢看什么、您看过什么类型的节目、该节目的评论、其他用户对该节目的参与度以及许多其他属性。

所有这些示例的共同要求是这些算法需要大量数据来学习。 人工智能根据所提供的数据提供建议或解决方案,因此其质量取决于数据的质量。 为了能够真正利用这项技术提供的功能,我们必须认真考虑组织我们收集的数据并在所有产品中管理这些数据。 人工智能界有句俗话:“垃圾进,垃圾出”。

4、AI给建筑带来哪些改变?

过去几年,建筑技术得到了大量投资。 该投资的很大一部分用于施工流程不同部分的数字化。 BIM 模型改变了建筑物的设计方式,项目管理和问题管理流程已转移到云端,运营管理也变得更加“传感化”和自动化。 随着数据的可用性,基于人工智能的应用程序在建筑中找到了更多的用途。

4.1 生成式设计

生成式设计(generative design)是一种寻找形式的过程,可以模仿自然的进化设计方法。 计算机科学家已经找到了帮助建筑设计过程的方法。 它通常从明确指定设计目标开始,然后探索解决方案的无数可能排列以找到最佳选择。 通过一个例子就变得更清楚了。

多伦多的 Autodesk 团队搬进了一座采用新设计流程设计的新建筑,这也创造了一个好故事。 研究人员使用生成式设计来帮助他们找到满足其所有需求的理想建筑设计。 这个过程首先要了解对办公楼居民来说重要的所有参数——相邻偏好、工作方式偏好、嗡嗡声、生产力、日光和室外景观。

从左到右,每个计划都覆盖了以下参数的模拟:邻近偏好、工作方式偏好、嗡嗡声、生产力、日光和室外景观。

然后,该输入被输入计算机系统,该系统了解这些设计参数以及物理位置的要求。 然后,该算法产生了几种满足所有这些需求的设计,建筑师可以从中选择以匹配风格和其他需求。 由于这个过程非常快,因此很容易使设计体验迭代并基于多次对话来工作和修改最终设计。 正如本文更深入地解释的那样,除了解决棘手的实际挑战之外,生成设计还可以通过生成改善多个利益相关者之间的调度和协调的设计来提高整个开发过程的效率和经济性。

4.2 风险缓解

建筑工地上每天都会进行风险评估和缓解。 有数百个分包商同时从事不同的行业; 有数以千计的问题被创建和管理,并且一切都在不断变化。 BIM 360 IQ 项目的重点是了解施工经理、项目经理和主管每天处理这些问题的挑战,以及利用人工智能改进流程的方法。 在与几位建筑主管交谈、参观他们的工地,然后查看他们生成的数据后,我们发现按风险对问题进行优先级排序将提供一种提高效率的可行方法。

使用人工智能,特别是构建语言分析,可以自动分配问题的优先级。 这些算法能够理解和预测复杂的事情,例如如果不解决某个问题是否会导致潜在的水渗透。 该系统利用了许多项目质量经理在监控项目时观察到的描述。

例如,如果质量经理观察到窗外防水板不完整的问题,并将其记录在 BIM 360 Field(通常的做法),那么 AI 算法会运行这些数据,并自动将其标记为潜在的水问题。 当管理员检查仪表板上的所有问题时,可以提请管理员注意。 该系统目前正在进行试点,任何使用 BIM 360 产品的人都可以使用。

该系统还更进一步,将问题产生的所有风险封装到负责该问题的分包商中。 它考虑了分包商的各种因素,例如他们过去的问题管理行为、当前的工作量、他们所负责的问题的重要性。 然后,该算法能够为项目中的每个分包商分配一个“风险评分”,这是一个指标,表明他们当前面临的项目风险程度,以便施工经理可以更好地优先考虑与他们密切合作的时间这些团队。

4.3 安全

施工安全是所有工地的首要任务。 BIM 360 IQ 专注于了解安全问题的行为和背景,然后引起安全经理的注意。 IQ 应用程序会自动扫描工作现场的所有安全问题,并在其上附加一个标签,表明是否可能导致潜在的死亡。 OSHA 显示,2015 年所有与建筑相关的死亡事故中,约 67% 是由于与“四大致命”相关的问题造成的——坠落、撞击、夹在中间和触电。 IQ 算法对属于四种致命问题前兆的安全问题进行了分类。

IQ 应用程序显示了项目分包商的列表,以及按“四个致命”类别细分的安全问题。

该应用程序还可以深入了解导致潜在事故的实际危险是什么,并显示 39 种不同危险的分布情况。

IQ 应用程序可以在安全问题中检测到的危险子集。

这使得安全管理人员能够了解他们应该将规划和培训工作的具体重点放在哪里,并在进行安全行走时更加仔细地观察特定问题。

如今,每天都会在工地上拍摄大量照片和视频。 每个建筑工人都有一部带摄像头的手机,为他们制造的每个问题拍照几乎是标准做法。 无人机已经变得越来越普遍,它们经常用于空中拍摄以及测量进度等更高级的活动。 Go-pro 和智能头盔也变得越来越普遍。 鉴于照片数量过多,大多数技术应用尚未跟上,并且没有一个好的解决方案来管理照片或利用它们来获得更好的洞察力。

Smartvid.io 是一家专门解决此解决方案的技术初创公司。 他们提供了一个与其他不同技术供应商集成的平台,将您的所有图像集中到一个地方。 然而,他们更进一步,他们使用人工智能来理解图像中的内容。 正如我们之前在自动驾驶汽车的示例中看到的那样,可以隔离和理解图像中的各种对象。 Smartvid.io 将它们称为“智能标签”,它们允许更好的系统来分类和搜索照片。

在这张建筑工人走下梯子的图像中,Smartvid.io 可以自动将左侧显示的标签添加到图像中。

由于 Smartvid.io 了解构建中的更高级别概念,因此它提供了更智能的搜索。 上图显示了项目中针对查询“高于天花板”的所有图像。

5、Autodesk 未来将为 AEC 中的 AI 做什么?

BIM 360 IQ 质量产品是第一个用于建筑的人工智能产品,从那时起,我们每年都在努力挑战极限。 我们构建的应用程序专注于解决施工质量和安全方面的挑战。 我们的下一步工作是采用类似的方法进行项目管理,并利用人工智能来增强流程。

6、数据平台

在整个建筑行业,有多家技术供应商提供管理数据的解决方案,但它们通常彼此不兼容。 当所有数据源都可以相互连接时,基于人工智能的解决方案的力量才能得到最好的释放。 为了满足这一需求,Autodesk 还致力于构建一个允许第三方集成的数据平台。 这将使不同的建筑公司能够将所有数据转移到一个平台上,该平台也具有通用分析层的功能。 Autodesk 正在将 ERP 数据和项目管理数据等其他数据源引入该平台,并与 Smartvid.io、Triax Technologies、SmartBid 等其他建筑数据公司合作。

新 BIM 360 数据平台的概念架构

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/535129.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于springboot的医院药品管理系统

前言 基于Java的医院药品管理系统是一个利用JAVA技术建设的网上管理系统,在基于Java的医院药品管理管理中实现信息化。系统的设计就是为了迎合广大用户需求而创建的一个界面简洁、有定向内容、业务逻辑简单易操作的基于Java的医院药品管理系统。本文以基于Java的医…

【论文解读】大模型事实性调查(下)

http://t.csdnimg.cn/4md5U 上期我们分享了《大模型事实性调查》论文解读的前半部分,这一期为大家带来后面的内容,欢迎阅读交流。 四、事实性分析 在前面的第3节中,论文提供了与评估事实性相关的定量统计数据。在本节中,论文将更…

2024年第15届蓝桥杯嵌入式组注意事项之新建LCD工程

2024年第15届蓝桥杯嵌入式组注意事项之新建LCD工程 今天是2024年4月11日,距离蓝桥杯比赛还有一天开始,几日前本人拿到了今年赛场的资源包,发现了一点的变化 首先是文件夹的结构往年有所不同 最重要的变化还是LCD的例程的变化,往年…

记录vite打包并上传到npm

开始 起因:我们单位这个项目用的vitereact使用print打印 开发环境没问题、一到打包时就卡住、所以我就想单独打包成组件在引用看看还有问题么、结果还真可以!又是离谱的一天 首先需要把npm的分支切换成官网地址、因为只有官网地址才能登陆npm账号 这里说…

Mac上的最佳3D建模工具-犀牛Rhinoceros 8 for Mac v8.6.24101.05002完美兼容激活

Rhino 8是一款计算机辅助设计(CAD)和三维建模软件,由美国公司McNeel & Associates开发。它是Rhino系列的最新版本,用于创建、编辑、分析、渲染和动画三维模型。 以下是Rhino 8的一些主要特点和功能: 1. **强大的…

五、书架开发--1.书架标题组件交互、获取书架数据

添加书架页面,做路由配置 首先添加书架页面,到views中的store中添加一个StoreShelf表示书架 然后到路由中进行注册 然后书城首页的返回键我们是想要点击返回的话就跳转到书架页面,所以如下this.$router.push(/store/shelf) 做书架标题组件 …

Nevion视频会议光端机AAV-3G-XMUX系列

序号型号描述(厂商:Nevion)3G/HD/SD-SDI 视音频光端机,0-20km1AAV-3G-XMUX-SFP3G/HD/SD-SDI 音频嵌入/解嵌器模块,带SFP光模块插座。支持4路AES加嵌和解嵌,8路模拟音频加嵌。内置音频矩阵及处理器模块&…

【spring】@Profile注解学习

Profile介绍 在Spring框架中,Profile注解用于根据特定的配置文件来有条件地激活或禁用Bean的定义。这在开发和测试过程中非常有用,因为它允许你为不同的环境(如开发、测试、生产)定义不同的配置。 Profile不仅可以标注在方法上&…

PCB封装库的创建及引入

法1 1.创建lib 2.放置 找到你想要画的封装的器件的数据手册了解相关信息。 直插式选Multi-layer 贴片选Top-layer 焊盘尺寸 焊盘空尺寸 法2 嘉立创eda直接copy 再嘉立创中找到你想要的pcb,导出为ad 然后再ad中找到我们导出的文件 复制他 然后再库中粘贴 pcb库…

【算法】哈希表

个人主页 : zxctscl 如有转载请先通知 题目 1. 1. 两数之和1.1 分析1.2 代码 2. 面试题 01.02. 判定是否互为字符重排2.1 分析2.2 代码 3. 217. 存在重复元素3.1 分析3.2 代码 4. 219. 存在重复元素 II4.1 分析4.2 代码 5. 49. 字母异位词分组5.1 分析5.2 代码 1. 1…

L2-2 巴音布鲁克永远的土(二分+并查集)

思路:我们可以二分答案,然后判断当前答案合不合理。 对于判断答案合理,可以用并查集,看mid能否把所有检查点连进一个集合中,枚举每个结点,如何当前结点周围的四个方向可以连的话,就加进同一个集…

“桃花庵主”是我国哪位古代名人的称号?2024年4月12日蚂蚁庄园今日答案

原文来源:蚂蚁庄园今日答案 - 词令 蚂蚁庄园是一款爱心公益游戏,用户可以通过喂养小鸡,产生鸡蛋,并通过捐赠鸡蛋参与公益项目。用户每日完成答题就可以领取鸡饲料,使用鸡饲料喂鸡之后,会可以获得鸡蛋&…

如何在群晖本地搭建在线PS工具Potopea并实现无公网IP远程编辑图片

文章目录 1. 部署Photopea2. 运行Photopea3. 群晖安装Cpolar4. 配置公网地址5. 公网访问测试6. 固定公网地址 本文主要介绍如何在群晖NAS使用Docker部署Potopea在线图片编辑工具,并结合cpolar内网穿透实现公网环境可以远程访问本地部署的Potopea. Photopea是一款强大…

为什么使用MQ????

1、异步处理 场景说明:用户注册后,需要发注册邮件和注册短信,传统的做法有两种 1.串行的方式 2.并行的方式。 串行方式: 将注册信息写入数据库后,发送注册邮件,再发送注册短信,以上三个任务全部完成后才返回给客户端。 这有一个问题是,邮件,短信并不是…

【全网独家】oceanbase容器重启时报obshell failed错误,无法正常启动的问题处理

正常运行的oceanbase容器,重新启动该容器却启动不了,重启服务器也无法恢复,报obshell failed错误,无法正常启动,本文记录了问题处理过程。 一、问题现象 1、正常运行的oceanbase容器,重启却启动不了 2、运…

C++之双向链表与哈希链表用法区别实例(二百六十八)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

在vite中限制node版本

1.修改package.json文件 {"name": "wine-store-frontend","version": "0.0.0","private": true,"type": "module","scripts": {"dev": "vite --open","build"…

MATLAB有限元结构动力学分析与工程应用-徐斌|【PDF电子书+配套Matlab源码】

专栏导读 作者简介:工学博士,高级工程师,专注于工业软件算法研究本文已收录于专栏:《有限元编程从入门到精通》本专栏旨在提供 1.以案例的形式讲解各类有限元问题的程序实现,并提供所有案例完整源码;2.单元…

编译原理 学习笔记

1、代码: (1 2) * 3 2、词法解析: 3、抽象语法树: 4、语法树递归下降求值: 先Current_Node是根节点乘号,乘号,是中缀运算符,找左子节点,是加号,加号是中缀表达式&…

【微命令】git 如何修改某个分支的名字(git branch -m newbranch)

简要信息,快速记录 命令 # 切换到某个需要修改的分支 git checkout oldbranch# 修改分支名字 git branch -m newbranch假设作为git设计者,要用来修改branch的命令,那么就是 git branch作为前缀,然后进一步修改的命令是branch相关…