代码学习记录40---动态规划

随想录日记part40

t i m e : time: time 2024.04.10



主要内容:今天开始要学习动态规划的相关知识了,今天的内容主要涉及:
买卖股票的最佳时机加强版。

  • 123.买卖股票的最佳时机III
  • 188.买卖股票的最佳时机IV


动态规划五部曲:
【1】.确定dp数组以及下标的含义
【2】.确定递推公式
【3】.dp数组如何初始化
【4】.确定遍历顺序
【5】.举例推导dp数组

Topic1买卖股票的最佳时机|||

在这里插入图片描述

思路:

接下来进行动规五步曲:
1.确定dp数组以及下标的含义:
一天一共就有五个状态,

  • 0.没有操作 (其实我们也可以不设置这个状态)
  • 1.第一次持有股票
  • 2.第一次不持有股票
  • 3.第二次持有股票
  • 4.第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。
需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。
2.确定递推公式:
【达到dp[i][1]有两个操作】:
操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?
一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);
【dp[i][2]也有两个操作】:
操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
同理可推出剩下状态部分:
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

3.dp数组如何初始化
dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;
第0天做第一次买入的操作,dp[0][1] = -prices[0];
第0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;
第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
同理第二次卖出初始化dp[0][4] = 0;
4.确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
5.举例推导dp数组
以输入[1,2,3,4,5]为例在这里插入图片描述

代码如下:

class Solution {
  class Solution {
    public int maxProfit(int[] prices) {
        // 定义dp
        int len = prices.length;
        int[][] dp = new int[len][5];
        // 初始化
        dp[0][1] = -prices[0];
        dp[0][3] = -prices[0];
        // 状态转移
        for (int i = 1; i < len; i++) {
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = Math.max(dp[i - 1][1] + prices[i], dp[i - 1][2]);
            dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = Math.max(dp[i - 1][3] + prices[i], dp[i - 1][4]);
        }
        return dp[len - 1][4];

    }
}


时间复杂度 O ( n ) O(n) O(n)
空间复杂度 O ( n ∗ 5 ) O(n*5) O(n5)



Topic2买卖股票的最佳时机IV

题目:
在这里插入图片描述

思路:

参考上一题

class Solution {
    public int maxProfit(int k, int[] prices) {
        // 定义dp
        int len = prices.length;
        int[][] dp = new int[len][2 * k + 1];
        // 初始化
        for (int i = 1; i < 2 * k + 1; i = i + 2) {
            dp[0][i] = -prices[0];
        }
        for (int i = 1; i < len; i++) {
            for (int j = 0; j < 2 * k - 1; j = j + 2) {
                dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = Math.max(dp[i - 1][j + 1] + prices[i], dp[i - 1][j + 2]);
            }
        }
        return dp[len - 1][2 * k];
    }
}

时间复杂度 O ( n ∗ k ) O(n*k) O(nk)
空间复杂度 O ( n ∗ k ) O(n*k) O(nk)



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/533144.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

李廉洋:4.11黄金原油早盘#行情走势#分析及策略。

美国通胀数据超出预期&#xff0c;抑制了对美联储降息的押注。Coex Partners有限公司宏观经济学家Henrik Gullberg表示&#xff1a;“对新兴市场和风险资产来说&#xff0c;(通胀)高企持续时间更长是个坏消息&#xff0c;还因为它增加了美国和全球经济更明显下滑的风险。CPI数据…

代码随想录--数组--二分查找

数组理论基础 数组是存放在连续内存空间上的相同类型数据的集合。 数组可以方便的通过下标索引的方式获取到下标下对应的数据。 举一个字符数组的例子&#xff0c;如图所示&#xff1a; 需要两点注意的是 数组下标都是从0开始的。 数组内存空间的地址是连续的。 正是因为数…

lv逻辑卷(虚拟磁盘)及配额实操

、LVM 1.LVM概念 LVM逻辑卷管理&#xff08;Logical Volume Manager&#xff09;&#xff1a;LVM 适合于管理大存储设备&#xff0c;并允许用户动态调整磁盘容量大小&#xff0c;提高磁盘管理的灵活性。LVM的快照功能可以帮助我们快速备份数据。 2.LVM对比磁盘分区的优点 1…

IP查询在追踪网络攻击源头中的应用

随着网络攻击事件的不断增加&#xff0c;追踪攻击源头成为网络安全领域的重要任务之一。IP查询技术通过分析网络流量中的IP地址&#xff0c;可以帮助确定攻击的来源。本文将探讨IP查询在追踪网络攻击源头中的应用&#xff0c;包括其原理、方法以及实际案例分析。 IP地址查询&a…

git学习 1

打开自己想要存放git仓库的文件夹&#xff0c;右键打开git bush&#xff0c;用git init命令建立仓库 用 ls -a(表示全都要看&#xff0c;包括隐藏的)可以看到git仓库 也可以用 git clone 接github链接&#xff08;点code选项里面会给链接&#xff0c;结尾是git的那个&#xf…

LeetCode - 1702. 修改后的最大二进制字符串

文章目录 解析AC CODE 题目链接&#xff1a;LeetCode - 1702. 修改后的最大二进制字符串 解析 详细题解&#xff1a;贪心&#xff0c;简洁写法&#xff08;Python/Java/C/Go/JS/Rust&#xff09; 思路很牛b。 简单来说我们需要想办法将0配对&#xff0c;将其变为10&#xff0…

AI日报:GPT-4-Turbo正式版自带读图能力;Gemini1.5Pro开放API;SD3将于4月中旬发布;抖音宫崎骏AI特效爆火

欢迎来到【AI日报】栏目!这里是你每天探索人工智能世界的指南&#xff0c;每天我们为你呈现AI领域的热点内容&#xff0c;聚焦开发者&#xff0c;助你洞悉技术趋势、了解创新AI产品应用。 新鲜AI产品点击了解&#xff1a;AIbase - 智能匹配最适合您的AI产品和网站 &#x1f4f…

机器人路径规划:基于Q-learning算法的移动机器人路径规划(可以更改地图,起点,终点),MATLAB代码

一、Q-learning算法 Q-learning算法是强化学习算法中的一种&#xff0c;该算法主要包含&#xff1a;Agent、状态、动作、环境、回报和惩罚。Q-learning算法通过机器人与环境不断地交换信息&#xff0c;来实现自我学习。Q-learning算法中的Q表是机器人与环境交互后的结果&#…

Redis中的集群(五)

集群 在集群中执行命令 MOVED错误。 当节点发现键所在的槽并非由自己负责处理的时候&#xff0c;节点就会向客户端返回一个MOVED错误&#xff0c;指引客户端转向至正在负责槽的节点&#xff0c;MOVED错误的格式为: MOVED <slot> <ip>:<port>其中slot为键…

EEG Conformer:Convolutional Transformer for EEG Decoding and Visualization

原文链接&#xff1a;EEG Conformer 代码链接&#xff1a;EEG Conformer 背景 当前已经开发了各种模式识别方法来解码来自嘈杂的脑电图信号的有用信息。这些方法提取特征并针对不同的任务执行分类。例如&#xff1a;通用空间模式 &#xff08;CSP&#xff09; 用于增强运动图…

机器学习和深度学习-- 李宏毅(笔记与个人理解)Day10

Day 10 Genaral GUidance training Loss 不够的case Loss on Testing data over fitting 为什么over fitting 留到下下周哦~~ 期待 solve CNN卷积神经网络 Bias-Conplexiy Trade off cross Validation how to split? N-fold Cross Validation mismatch 这节课总体听下来比较…

云原生__K8S

createrepo --update /var/localrepo/# 禁用 firewall 和 swap [rootmaster ~]# sed /swap/d -i /etc/fstab [rootmaster ~]# swapoff -a [rootmaster ~]# dnf remove -y firewalld-*[rootmaster ~]# vim /etc/hosts 192.168.1.30 harbor 192.168.1.50 master 192.168.1.…

力扣19. 删除链表的倒数第 N 个结点

Problem: 19. 删除链表的倒数第 N 个结点 文章目录 题目描述思路及解法复杂度Code 题目描述 思路及解法 1.创建虚拟头节点dummy指向并将其next指向head&#xff1b;指针fast、slow指向dummy&#xff1b; 2.遍历链表获取其长度len&#xff1b; 3.先使fast走n 1步&#xff0c;再…

Mac安装配置ElasticSearch和Kibana 8.13.2

系统环境&#xff1a;Mac M1 (MacOS Sonoma 14.3.1) 一、准备 从Elasticsearch&#xff1a;官方分布式搜索和分析引擎 | Elastic上下载ElasticSearch和Kibana 笔者下载的是 elasticsearch-8.13.2-darwin-aarch64.tar.gz kibana-8.13.2-darwin-aarch64.tar.gz 并放置到个人…

图像生成:Pytorch实现一个简单的对抗生成网络模型

图像生成&#xff1a;Pytorch实现一个简单的对抗生成网络模型 前言相关介绍具体步骤准备并读取数据集定义生成器定义判别器定义损失函数定义优化器开始训练完整代码 训练生成的图片 前言 由于本人水平有限&#xff0c;难免出现错漏&#xff0c;敬请批评改正。更多精彩内容&…

【网站项目】校园失物招领小程序

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

java数据结构与算法刷题-----LeetCode210. 课程表 II

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 文章目录 深度优先遍历但不进行逆拓扑排序&#xff08;不用栈&#xff09;…

三年Android开发经验面试经历分享

最近&#xff0c;参加了多家公司的面试&#xff0c;下面是我所经历的一些面试问题及自己的回答思路。 一、京东面试 一面&#xff1a; 项目内容&#xff1a;主要讲述了在实习期间参与的项目&#xff0c;以及在项目中负责的工作和取得的成果。MVP模式&#xff1a;解释了MVP模…

特征融合篇 | YOLOv8改进之将Neck网络更换为多级特征融合金字塔HS-FPN | 助力小目标检测

前言:Hello大家好,我是小哥谈。HS-FPN(Hierarchical Scale Feature Pyramid Network)是一种用于目标检测任务的网络结构。它是在传统的Feature Pyramid Network(FPN)基础上进行改进的。HS-FPN的主要目标是解决目标检测中存在的多尺度问题。在传统的FPN中,通过在不同层级…

机器学习实训 Day1

线性回归练习 Day1 手搓线性回归 随机初始数据 import numpy as np x np.array([56, 72, 69, 88, 102, 86, 76, 79, 94, 74]) y np.array([92, 102, 86, 110, 130, 99, 96, 102, 105, 92])from matplotlib import pyplot as plt # 内嵌显示 %matplotlib inlineplt.scatter…