大创项目推荐 深度学习 机器视觉 车位识别车道线检测 - python opencv

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习 机器视觉 车位识别车道线检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

简介

你是不是经常在停车场周围转来转去寻找停车位。如果你的车辆能准确地告诉你最近的停车位在哪里,那是不是很爽?事实证明,基于深度学习和OpenCV解决这个问题相对容易,只需获取停车场的实时视频即可。

检测效果

废话不多说, 先上效果图
在这里插入图片描述
在这里插入图片描述
注意车辆移动后空车位被标记上
在这里插入图片描述
在这里插入图片描述

车辆移动到其他车位

在这里插入图片描述

实现方式
整体思路

这个流程的第一步就是检测一帧视频中所有可能的停车位。显然,在我们能够检测哪个是没有被占用的停车位之前,我们需要知道图像中的哪些部分是停车位。

第二步就是检测每帧视频中的所有车辆。这样我们可以逐帧跟踪每辆车的运动。

第三步就是确定哪些车位目前是被占用的,哪些没有。这需要结合前两步的结果。

最后一步就是出现新车位时通知我。这需要基于视频中两帧之间车辆位置的变化。

这里的每一步,我们都可以使用多种技术用很多种方式实现。构建这个流程并没有唯一正确或者错误的方式,但不同的方法会有优劣之分。

使用要使用到两个视觉识别技术 :识别空车位停车线,识别车辆
检测空车位

车位探测系统的第一步是识别停车位。有一些技巧可以做到这一点。例如,通过在一个地点定位停车线来识别停车位。这可以使用OpenCV提供的边缘检测器来完成。但是如果没有停车线呢?

我们可以使用的另一种方法是假设长时间不移动的汽车停在停车位上。换句话说,有效的停车位就是那些停着不动的车的地方。但是,这似乎也不可靠。它可能会导致假阳性和真阴性。

那么,当自动化系统看起来不可靠时,我们应该怎么做呢?我们可以手动操作。与基于空间的方法需要对每个不同的停车位进行标签和训练不同,我们只需标记一次停车场边界和周围道路区域即可为新的停车位配置我们的系统。

在这里,我们将从停车位的视频流中截取一帧,并标记停车区域。Python库matplotlib
提供了称为PolygonSelector的功能。它提供了选择多边形区域的功能。

我制作了一个简单的python脚本来标记输入视频的初始帧之一上的多边形区域。它以视频路径作为参数,并将选定多边形区域的坐标保存在pickle文件中作为输出。

在这里插入图片描述

import os
import numpy as np
import cv2
import pickle
import argparse
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from matplotlib.widgets import PolygonSelector
from matplotlib.collections import PatchCollection
from shapely.geometry import box
from shapely.geometry import Polygon as shapely_poly

points = []
prev_points = []
patches = []
total_points = []
breaker = False

class SelectFromCollection(object):
 def __init__(self, ax):
 self.canvas = ax.figure.canvas
 self.poly = PolygonSelector(ax, self.onselect)
 self.ind = []

 def onselect(self, verts):
 global points
 points = verts
 self.canvas.draw_idle()

 def disconnect(self):
 self.poly.disconnect_events()
 self.canvas.draw_idle()

def break_loop(event):
 global breaker
 global globSelect
 global savePath
 if event.key == 'b':
 globSelect.disconnect()
 if os.path.exists(savePath):
 os.remove(savePath)

 print("data saved in "+ savePath + " file") 
 with open(savePath, 'wb') as f:
 pickle.dump(total_points, f, protocol=pickle.HIGHEST_PROTOCOL)
 exit()

def onkeypress(event):
 global points, prev_points, total_points
 if event.key == 'n': 
 pts = np.array(points, dtype=np.int32) 
 if points != prev_points and len(set(points)) == 4:
 print("Points : "+str(pts))
 patches.append(Polygon(pts))
 total_points.append(pts)
 prev_points = points

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('video_path', help="Path of video file")
 parser.add_argument('--out_file', help="Name of the output file", default="regions.p")
 args = parser.parse_args()

 global globSelect
 global savePath
 savePath = args.out_file if args.out_file.endswith(".p") else args.out_file+".p"

 print("\n> Select a region in the figure by enclosing them within a quadrilateral.")
 print("> Press the 'f' key to go full screen.")
 print("> Press the 'esc' key to discard current quadrilateral.")
 print("> Try holding the 'shift' key to move all of the vertices.")
 print("> Try holding the 'ctrl' key to move a single vertex.")
 print("> After marking a quadrilateral press 'n' to save current quadrilateral and then press 'q' to start marking a new quadrilateral")
 print("> When you are done press 'b' to Exit the program\n")
 
 video_capture = cv2.VideoCapture(args.video_path)
 cnt=0
 rgb_image = None
 while video_capture.isOpened():
 success, frame = video_capture.read()
 if not success:
 break
 if cnt == 5:
 rgb_image = frame[:, :, ::-1]
 cnt += 1
 video_capture.release()
 
 while True:
 fig, ax = plt.subplots()
 image = rgb_image
 ax.imshow(image)
 
 p = PatchCollection(patches, alpha=0.7)
 p.set_array(10*np.ones(len(patches)))
 ax.add_collection(p)
 
 globSelect = SelectFromCollection(ax)
 bbox = plt.connect('key_press_event', onkeypress)
 break_event = plt.connect('key_press_event', break_loop)
 plt.show()
 globSelect.disconnect()
车辆识别

要检测视频中的汽车,我使用Mask-
RCNN。它是一个卷积神经网络,对来自几个数据集(包括COCO数据集)的数百万个图像和视频进行了训练,以检测各种对象及其边界。 Mask-
RCNN建立在Faster-RCNN对象检测模型的基础上。

除了每个检测到的对象的类标签和边界框坐标外,Mask RCNN还将返回图像中每个检测到的对象的像pixel-wise mask。这种pixel-wise
masking称为“ 实例分割”。我们在计算机视觉领域所看到的一些最新进展,包括自动驾驶汽车、机器人等,都是由实例分割技术推动的。

M-RCNN将用于视频的每一帧,它将返回一个字典,其中包含边界框坐标、检测对象的masks、每个预测的置信度和检测对象的class_id。现在使用class_ids过滤掉汽车,卡车和公共汽车的边界框。然后,我们将在下一步中使用这些框来计算IoU。

由于Mask-RCNN比较复杂,这里篇幅有限,需要mask-RCNN的同学联系博主获取, 下面仅展示效果:

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/530164.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vue第三方组件使用

文章目录 一、组件传值二、elementui组件使用三、fontawesome图标 一、组件传值 1、父组件与孩子组件传值 在孩子组件中定义props属性,里面定义好用于接收父亲数据的变量。 孩子组件是Movie Movie.vue。注意看在Movie组件里面有props对象中的title和rating属性用…

2024 抖音欢笑中国年(三):编辑器技巧与实践

前言 本次春节活动中,我们大部分场景使用内部的 SAR Creator互动方案来实现。 SAR Creator 是一款基于 TypeScript 的高性能、轻量化的互动解决方案,目前支持了Web和字节内部跨端框架平台,服务于字节内部的各种互动业务,包括但不限…

C++string类的实现

string类 string不属于STL,早于STL出现 看文档 C非官网(建议用这个) C官网 文章目录 string类一.为什么学习string类?1.C语言中的字符串2. 两个面试题(暂不做讲解) 二.标准库中的string类1. string类(了解)2. string类的常用接口说明(注意下面我只讲解…

echarts 如何设置(dataZoom)多个图形的数据区域一起联动缩放响应

数据区域联动缩放需要用到 dataZoom 的专属事件 dispatchAction 实现多个数据区域联动缩放功能 <div style"width:100%;height:320px;" id"test01"></div> <div style"width:100%;height:320px;" id"test02"></…

JavaScript教程:从基础到发展历程及语法规则的全面介绍

文章目录 一、JavaScript简介二、JavaScript发展历程三、JavaScript基础语法3.1、变量概念3.2、变量命名3.3、变量提升3.4、代码注释3.5、语句3.6、区块 四、总结 一、JavaScript简介 JavaScript 是一种高级的、解释型的编程语言&#xff0c;主要用于为网页添加交互性和动态效…

CSS实现卡片在鼠标悬停时突出效果

在CSS中&#xff0c;实现卡片在鼠标悬停时突出&#xff0c;通常使用:hover伪类选择器。 :hover伪类选择器用于指定当鼠标指针悬停在某个元素上时&#xff0c;该元素的状态变化。通过:hover选择器&#xff0c;你可以定义鼠标悬停在元素上时元素的样式&#xff0c;比如改变颜色、…

绝地求生:三大赛区PGS资格赛冠军已揭晓,2024PCL春季赛临近!

随着工资杯S2落幕&#xff0c;亚太、欧洲、美洲三大赛区的PGS资格赛也已结束&#xff0c;三大赛区冠军队伍分别是CES、TM、FALCONS。欧洲赛区此次竞争非常激烈&#xff0c;冠亚军的分差仅1分&#xff0c;从NAVI转会至TM的xmpl为TM的夺冠起到了非常重要的作用&#xff0c;此地大…

(二)ffmpeg 拉流推流示例

一、搭建流媒体服务器 在这里&#xff0c;选用的流媒体服务器是mediamtx。 下载地址&#xff1a;https://github.com/bluenviron/mediamtx/releases/tag/v1.6.0 系统不同选择的压缩包不同&#xff0c;我用的是ubuntu系统。 下载下来之后进行解压&#xff0c;可以看到里面有三…

抖音评论ID提取工具|视频关键词评论批量采集软件

抖音评论ID提取工具&#xff1a;批量抓取抖音评论 抖音评论ID提取工具是一款功能强大的软件&#xff0c;可以帮助您批量抓取抖音视频下的评论信息。通过输入关键词和评论监控词&#xff0c;即可进行评论的抓取&#xff0c;并提供评论昵称、评论日期、评论内容、命中关键词以及所…

SecureCRT通过私钥连接跳板机,再连接到目标服务器(图文教程)

文章目录 1. 配置第一个session&#xff08;跳板机&#xff09;2. 设置本地端口3. 设置全局firewall4. 配置第二个session&#xff08;目标服务器&#xff09; 服务器那边给了一个私钥&#xff0c;现在需要通过私钥连接跳板机&#xff0c;再连接到目标服务器上 &#x1f349; …

使用lv_micropython

想要在ESP32-C3使用Micropython开发GUI&#xff0c;所以需要编译lv_micropython&#xff0c;当前github上的版本是9.1.0。 一、开发环境 因为编译lv_micropython需要在linux系统下&#xff0c;但是我的电脑是windows系统&#xff0c;所以我在windows系统上安装了VMware虚拟机&…

微软对其基于Arm的Windows系统终将超越苹果充满信心

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

Flutter仿Boss-6.底部tab切换

效果 实现 图片资源采用boss包中的动画webp资源。Flutter采用Image加载webp动画。 遇到的问题 问题&#xff1a;Flutter加载webp再次加载无法再次播放动画问题 看如下代码&#xff1a; Image.asset(assets/images/xxx.webp,width: 40.w,height: 30.w, )运行的效果&#xf…

【Liunx】什么是make和makefile?

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …

抖音电商小店短视频直播年度运营规划方案

【干货资料持续更新&#xff0c;以防走丢】 抖音电商小店短视频直播年度运营规划方案 部分资料预览 资料部分是网络整理&#xff0c;仅供学习参考。 PPT可编辑&#xff08;完整资料包含以下内容&#xff09; 目录 年度运维方案的详细整理和规划。 一、行业分析洞察 - 市场增…

运行gitHub中的vue项目,遇到三个报错解决方案

报错1&#xff1a;解决npm run serve启动报错npm ERR Missing script:"serve" 启动项目的时候用npm run serve发现报了以下的错误 npm ERR! Missing script: "serve" npm ERR! npm ERR! To see a list of scripts, run: npm ERR! npm runnpm ERR! A co…

ubuntu下NTFS分区无法访问挂载-解决办法!

Ubuntu系统下&#xff0c;有的时候发现&#xff0c;挂载的NTFS文件系统硬盘无法访问。点击弹出类似问题&#xff1a; Error mounting /dev/sda1 at /media/root/新加卷: Command-line mount -t "ntfs" -o "uhelperudisks2,nodev,nosuid,uid0,gid0" "/…

为什么电脑越用越慢!

电脑随着时间推移逐渐变慢是一个常见的现象,其背后涉及多种原因。以下是导致电脑运行速度变慢的几个主要因素: 系统资源消耗增加 软件更新与新增应用:随着软件版本的更新和新应用程序的安装,它们往往对硬件资源的需求更高,尤其是对处理器、内存和硬盘的要求。这些新软件可…

LeetCode 53. 最大子序和

解题思路 相关代码 class Solution {public int maxSubArray(int[] nums) {//f[i]是以nums[i]结尾的连续子数组的最大和。int f[] new int[100010];f[0] nums[0];int resnums[0];for(int i1;i<nums.length;i){f[i] Math.max(f[i-1]nums[i],nums[i]);res Math.max(res,f…

(WSI分类)WSI分类文献小综述 2024

2024的WSI分类。 Multiple Instance Learning Framework with Masked Hard Instance Mining for Whole Slide Image Classification &#xff08;ICCV2024&#xff09; 由于阳性组织只占 Gi- gapixel WSI 的一小部分&#xff0c;因此现有的 MIL 方法直观上侧重于通过注意力机…