OpenCV与AI深度学习 | 实战 | 使用OpenCV确定对象的方向(附源码)

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:实战 | 使用OpenCV确定对象的方向(附源码)

导读

本文将介绍如何使用OpenCV确定对象的方向(即旋转角度,以度为单位)。 

1 先决条件

    安装Python3.7或者更高版本。可以参考下文链接:

    https://automaticaddison.com/how-to-set-up-anaconda-for-windows-10/

    或者自行下载安装:https://www.python.org/getit/

2 相关包安装与设置

    在我们开始之前,让我们确保我们已经安装了所有的软件包。检查您的机器上是否安装了OpenCV 。如果你使用 Anaconda,你可以输入:

conda install -c conda-forge opencv

或者使用pip安装,指令:

pip install opencv-python

安装科学计算库 Numpy:

pip install numpy

3 准备测试图像

    找一张图片。我的输入图像宽度为 1200 像素,高度为 900 像素。我的输入图像的文件名是input_img.jpg。

4 编写代码

    这是代码。它接受一个名为input_img.jpg的图像并输出一个名为output_img.jpg的带注释的图像。部分代码来自官方 OpenCV 实现:

https://docs.opencv.org/4.x/d1/dee/tutorial_introduction_to_pca.html

代码示例:


import cv2 as cv
from math import atan2, cos, sin, sqrt, pi
import numpy as np
 
def drawAxis(img, p_, q_, color, scale):
  p = list(p_)
  q = list(q_)
 
  ## [visualization1]
  angle = atan2(p[1] - q[1], p[0] - q[0]) # angle in radians
  hypotenuse = sqrt((p[1] - q[1]) * (p[1] - q[1]) + (p[0] - q[0]) * (p[0] - q[0]))
 
  # Here we lengthen the arrow by a factor of scale
  q[0] = p[0] - scale * hypotenuse * cos(angle)
  q[1] = p[1] - scale * hypotenuse * sin(angle)
  cv.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv.LINE_AA)
 
  # create the arrow hooks
  p[0] = q[0] + 9 * cos(angle + pi / 4)
  p[1] = q[1] + 9 * sin(angle + pi / 4)
  cv.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv.LINE_AA)
 
  p[0] = q[0] + 9 * cos(angle - pi / 4)
  p[1] = q[1] + 9 * sin(angle - pi / 4)
  cv.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv.LINE_AA)
  ## [visualization1]
 
def getOrientation(pts, img):
  ## [pca]
  # Construct a buffer used by the pca analysis
  sz = len(pts)
  data_pts = np.empty((sz, 2), dtype=np.float64)
  for i in range(data_pts.shape[0]):
    data_pts[i,0] = pts[i,0,0]
    data_pts[i,1] = pts[i,0,1]
 
  # Perform PCA analysis
  mean = np.empty((0))
  mean, eigenvectors, eigenvalues = cv.PCACompute2(data_pts, mean)
 
  # Store the center of the object
  cntr = (int(mean[0,0]), int(mean[0,1]))
  ## [pca]
 
  ## [visualization]
  # Draw the principal components
  cv.circle(img, cntr, 3, (255, 0, 255), 2)
  p1 = (cntr[0] + 0.02 * eigenvectors[0,0] * eigenvalues[0,0], cntr[1] + 0.02 * eigenvectors[0,1] * eigenvalues[0,0])
  p2 = (cntr[0] - 0.02 * eigenvectors[1,0] * eigenvalues[1,0], cntr[1] - 0.02 * eigenvectors[1,1] * eigenvalues[1,0])
  drawAxis(img, cntr, p1, (255, 255, 0), 1)
  drawAxis(img, cntr, p2, (0, 0, 255), 5)
 
  angle = atan2(eigenvectors[0,1], eigenvectors[0,0]) # orientation in radians
  ## [visualization]
 
  # Label with the rotation angle
  label = "  Rotation Angle: " + str(-int(np.rad2deg(angle)) - 90) + " degrees"
  textbox = cv.rectangle(img, (cntr[0], cntr[1]-25), (cntr[0] + 250, cntr[1] + 10), (255,255,255), -1)
  cv.putText(img, label, (cntr[0], cntr[1]), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv.LINE_AA)
 
  return angle
 
# Load the image
img = cv.imread("input_img.jpg")
 
# Was the image there?
if img is None:
  print("Error: File not found")
  exit(0)
 
cv.imshow('Input Image', img)
 
# Convert image to grayscale
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
 
# Convert image to binary
_, bw = cv.threshold(gray, 50, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
 
# Find all the contours in the thresholded image
contours, _ = cv.findContours(bw, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)
 
for i, c in enumerate(contours):
 
  # Calculate the area of each contour
  area = cv.contourArea(c)
 
  # Ignore contours that are too small or too large
  if area < 3700 or 100000 < area:
    continue
 
  # Draw each contour only for visualisation purposes
  cv.drawContours(img, contours, i, (0, 0, 255), 2)
 
  # Find the orientation of each shape
  getOrientation(c, img)
 
cv.imshow('Output Image', img)
cv.waitKey(0)
cv.destroyAllWindows()
  
# Save the output image to the current directory
cv.imwrite("output_img.jpg", img)

5 运行结果

    使用PCA(主成分分析)方法获取物体的主方向,效果如下:

了解旋转轴

    每个对象的正 x 轴是红线。每个对象的正 y 轴是蓝线。 

    全局正x 轴从左到右水平穿过图像。全局正z 轴指向此页外。全局正y 轴从图像底部垂直指向图像顶部。

    使用右手定则测量旋转,将四根手指伸直(食指到小指)沿全局正 x 轴方向伸出。

    然后将四根手指逆时针旋转 90 度。您的指尖指向正 y 轴,而您的拇指指向页面外指向正 z 轴。

计算0~180°之间的方向

    如果我们要计算对象的方向并确保结果始终在 0 到 180 度之间,我们可以使用以下代码:


# This programs calculates the orientation of an object.
# The input is an image, and the output is an annotated image
# with the angle of otientation for each object (0 to 180 degrees)
 
import cv2 as cv
from math import atan2, cos, sin, sqrt, pi
import numpy as np
 
# Load the image
img = cv.imread("input_img.jpg")
 
# Was the image there?
if img is None:
  print("Error: File not found")
  exit(0)
 
cv.imshow('Input Image', img)
 
# Convert image to grayscale
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
 
# Convert image to binary
_, bw = cv.threshold(gray, 50, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
 
# Find all the contours in the thresholded image
contours, _ = cv.findContours(bw, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)
 
for i, c in enumerate(contours):
 
  # Calculate the area of each contour
  area = cv.contourArea(c)
 
  # Ignore contours that are too small or too large
  if area < 3700 or 100000 < area:
    continue
 
  # cv.minAreaRect returns:
  # (center(x, y), (width, height), angle of rotation) = cv2.minAreaRect(c)
  rect = cv.minAreaRect(c)
  box = cv.boxPoints(rect)
  box = np.int0(box)
 
  # Retrieve the key parameters of the rotated bounding box
  center = (int(rect[0][0]),int(rect[0][1])) 
  width = int(rect[1][0])
  height = int(rect[1][1])
  angle = int(rect[2])
 
     
  if width < height:
    angle = 90 - angle
  else:
    angle = -angle
         
  label = "  Rotation Angle: " + str(angle) + " degrees"
  textbox = cv.rectangle(img, (center[0]-35, center[1]-25), 
    (center[0] + 295, center[1] + 10), (255,255,255), -1)
  cv.putText(img, label, (center[0]-50, center[1]), 
    cv.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,0), 1, cv.LINE_AA)
  cv.drawContours(img,[box],0,(0,0,255),2)
 
cv.imshow('Output Image', img)
cv.waitKey(0)
cv.destroyAllWindows()
  
# Save the output image to the current directory
cv.imwrite("min_area_rec_output.jpg", img)

最终输出结果:

参考链接:https://automaticaddison.com/how-to-determine-the-orientation-of-an-object-using-opencv/

THE END!

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/529112.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Clarity AI:免费开源的AI无损图片放大图像升级器和增强工具

可以作为Magnific AI的平替版本。Magnific AI是一款基于人工智能技术的图像处理工具&#xff0c;主要功能包括图像放大、像素级AI重绘、灵活的设置调整以及多种优化场景。它能够支持最高放大至16倍&#xff0c;甚至可以达到1亿像素的分辨率。此外&#xff0c;Magnific AI还具备…

lua学习笔记13(一些特殊用法的学习和三目运算符的实现)

print("*****************************一些特殊用法的学习*******************************") print("*****************************多变量赋值*******************************") local a,b,c114514,8848,"凌少" print(a) print(b) print(c) -…

电脑微信双开,微信微信多开支持多个微信同时登录,快速切换,方便快捷 电脑最简单的微信双开多开方法 电脑上怎么登录两个微信账号?电脑微信怎么能够双开?

支持多个微信账号同时登录&#xff0c;不限微信登录个数&#xff0c;运行快速&#xff0c;稳定不卡顿 集成所有聊天窗口&#xff0c;一键快捷切换&#xff0c;窗口再多也不乱&#xff0c;提高你的工作效率 同时管理多个微信号&#xff0c;且需要分别维护用户关系、粉丝社群 …

lua学习笔记14(协程的学习)

print("*****************************协程的学习*******************************") --创建1 coroutine.create(function()) 使用1 coroutine.resume(co) -- 创建2 co2coroutine.wrap(fun) 使用2 co2() --协程的挂起函数 coroutine.yield() --协程的状态 --c…

蓝桥杯刷题--RDay5

清理水域--枚举 8.清理水域 - 蓝桥云课 (lanqiao.cn)https://www.lanqiao.cn/problems/2413/learning/?page1&first_category_id1&second_category_id3&tags2023 小蓝有一个n m大小的矩形水域&#xff0c;小蓝将这个水域划分为n行m列&#xff0c;行数从1…

layui后台框架,将左侧功能栏目 集中到一个页面,通过上面的tab切换 在iframe加载对应页面

实现上面的 功能效果。 1 html代码 <form class"layui-form layui-form-pane" action""><div class"layui-tab" lay-filter"demo"><ul class"layui-tab-title"><li id"a0" class"lay…

Unity自己实现的中英文的切换(简单好抄)

关键技术&#xff08;读取文件的方法&#xff0c;Split()分割字符串&#xff09; 1.搭建一个这样的场景&#xff0c;场景中有3个文本&#xff08;用新版的&#xff09;&#xff0c;一个空对象&#xff0c;一个按钮 2.编写翻译文本&#xff08;编写一个txt文本&#xff0c;在文…

土耳其航空2023年共运送旅客8340万人次,境内境外航线运力稳步增长

2023年,尽管面对持续紧张的国际局势和摇摆不定的宏观经济,土耳其航空仍实现了里程碑式的业绩表现,共计运输旅客8340万人次。土耳其境内航线运力比2022年增长了23.5%,运送旅客突破3000万人次;国际航线运力增长16%,运送旅客达5300万人次,并实现了14%的同比增长。其中,来自欧洲国家…

Python高级

不定长参数 位置不定长参数&#xff0c;获取参数args会整合为一个元组 def info(*args):print(arg is, args)print(type(arg) is, type(args))info(1, 2, 3, 4, a, b)# 输出 # arg is (1, 2, 3, 4, a, b) # type(arg) is <class tuple> 关键字不定长参数&#xff0c;&…

【STL】stack与queue的底层原理及其实现

文章目录 stack的介绍库中stack的使用栈的模拟实现queue的介绍库中queue的使用queue的模拟实现 stack的介绍 &#xff08;图片来自知乎&#xff09; 1.stack是一种容器适配器&#xff0c;模拟了栈的数据结构。数据只能从一端进去&#xff0c;另一端出来&#xff08;先进后出&am…

VM-UNet: Vision Mamba UNet for Medical Image Segmentation

VM-UNet: Vision Mamba UNet for Medical Image Segmentation VM-UNet&#xff1a;基于视觉Mamba UNet架构的医学图像分割 论文链接&#xff1a;http://arxiv.org/abs/2402.02491 代码链接&#xff1a;https://github.com/JCruan519/VM-UNet 1、摘要 文中利用状态空间模型SS…

JavaSE:图书管理系统

目录 一、前言 二、内容需求 三、类的设计 &#xff08;一&#xff09;图书类 1.Book 类 2.BookList 类 &#xff08;二&#xff09;操作类 1.添加图书AddOperation类 2.借阅图书BorrowOperation类 3.删除图书DelOperation类 4.显示图书ShowOperation类 5.退出系统Ex…

ExpressLRS开源代码之功能性能测试

ExpressLRS开源代码之功能&性能测试 1. 源由2. 规格2.1 功能2.2 性能 3. 概念3.1 产品组成3.2 性能分解3.3 专业归口 4. 测试4.1 实验室测试4.2 简易实验方法4.3 外场测试4.4 终极验证 5. 调优5.1 RF调优5.2 模块调优5.3 产品调优 6. 总结 1. 源由 最近&#xff0c;在ELRS…

【ArcGIS 小技巧】隐藏tif影像的黑边或白边

tif影像是规划中常用的参考数据。 但是当我们把tif拖入到ArcGIS中查看时&#xff0c;经常会出现黑色或白色的多余区域遮挡显示。 下面介绍我碰到的两种情况及解决办法。 1、三波段tif 三波段指的是R、G、B三个波段&#xff0c;可在tif影像的属性中查看是否有RGB三波段。 这…

无忧网络验证系统 getInfo SQL注入漏洞复现

0x01 产品简介 无忧网络验证是一套安全稳定高效的网络验证系统,基于统一核心的通用互联网+信息化服务解决方案,是为软件作者设计的一套完整免费的网络验证体系。可以为开发的软件增加收费授权的功能,让作者开发的软件可以进行销售、充值、登陆等操作,并且提供防破解验证功能…

JS 轮播图点击左右切换

点击左右按钮实现轮播图切换图片 style&#xff1a; *{margin: 0;padding: 0;margin: auto;}#img1{width: 300px;height: 300px;position: relative;}#butto1{width: 50px;height: 100px;font-size: 50px;border: none;background-color: hsla(0, 0%, 0%, 0.2);position: abs…

Flyway 数据库版本管理

一、Flyway简介 Flyway是一款开源的数据库迁移工具&#xff0c;可以管理和版本化数据库架构。通过Flyway&#xff0c;可以跟踪数据库的变化&#xff0c;并将这些变化作为版本控制的一部分。Flyway支持SQL和NoSQL数据库&#xff0c;并且可以与现有的开发流程无缝集成&#xff0…

【C++】用红黑树封装map和set

我们之前学的map和set在stl源码中都是用红黑树封装实现的&#xff0c;当然&#xff0c;我们也可以模拟来实现一下。在实现之前&#xff0c;我们也可以看一下stl源码是如何实现的。我们上篇博客写的红黑树里面只是一个pair对象&#xff0c;这对于set来说显然是不合适的&#xff…

web——php反序列化,pop链构造

前置知识 序列化 会变成这样 序列化解释 反序列化 public,private,protetced 当它是private时 当他是protetcted 当我在类之后在创建一个类 反序列化只可以改变变量&#xff0c;然后不可以自己调用里面的函数&#xff0c;只可以用它给出的函数调用 安全问题 ——construct是…

Vue文档

Vue是什么&#xff1f;为什么要学习他 Vue是什么&#xff1f; Vue是前端优秀框架&#xff0c; 是一套用于构建用户界面的渐进式框架 为什么要学习Vue Vue是目前前端最火的框架之一Vue是目前企业技术栈中要求的知识点Vue可以提升开发体验Vue学习难度较低… Vue开发前的准备 安…