计算机网络:数据链路层 - CSMA/CD协议

计算机网络:数据链路层 - CSMA/CD协议

    • 媒体接入控制
    • CSMA/CD协议
      • 截断二进制指数退避算法
      • 帧长与帧间间隔
      • 信道利用率


媒体接入控制

如图所示,这是一根同轴电缆,有多台主机连接到这根同轴电缆上,他们共享这根传输媒体,形成了一个总线型的局域网。各主机竞争使用总线随机的在信道上发送数据。

在这里插入图片描述

如果恰巧有两个或更多的站点在同一时刻发送数据,那么信号在共享媒体上就要产生碰撞,即发生了冲突,使得这些站点的发送都失败。

共享信道要着重考虑的一个问题就是如何协调多个发送和接收站点对一个共享传输媒体的占用,也就是媒体接入控制

媒体接入控制技术主要分为两类,静态划分信道动态接入控制

静态划分信道:

静态划分信道主要有频分多址时分多址波分多址码分多址

静态划分信道,也就是预先固定分配好信道。这类方法非常不灵活,对于突发性数据传输,信道利用率会很低。通常在无线网络的物理层中使用,而不是在数据链路层中使用。该方面知识我已在物理层讲解:[计算机网络:物理层 - 信道复用]

动态接入控制:

动态接入控制又可以分为两类,一类是受控接入,另一类是随机接入

受控接入

用户要遵循一定的规则发送数据,而不能随意的发送数据

随机接入:

所有站点通过竞争随机的在信道上发送数据

随机接入存在一个问题,因为站点发送信息是随机的,如果恰巧有两个或更多的站点在同一时刻发送数据,那么信号在共享媒体上就要产生碰撞,使得这些站点的发送都失败。因此,随机接入这类协议要解决的关键问题是如何尽量避免冲突,以及在发生冲突后如何尽快恢复通信

著名的共享式以太网采用的就是随机接入。需要注意的是,随着技术的发展,交换技术的成熟和成本的降低,具有更高性能的使用点对点链路和链路层交换机的交换式局域网在有限领域已完全取代了共享式局域网,但由于无线信道的广播天性,无线局域网仍然使用的是共享媒体技术。


CSMA/CD协议

如图所示,多个主机连接到一根总线上,各主机随机发送帧:

在这里插入图片描述

当两个或多个主机同时发送帧时,代表帧的信号就会产生碰撞或成为冲突。又或者当某个主机正在使用总线发送帧的过程中,另一台主机也要发送帧,这同样也会产生碰撞。

很显然,如何协调总线上各主机的工作,尽量避免产生碰撞是一个必须要解决的重要问题。早期的共享式以太网采用载波监听多点接入碰撞检测,也就是CSMA/CD协议来解决该问题。

多点接入MA:多个主机连接在一条总线上,竞争使用总线
载波监听CS:每一个站点在发送帧之前,先要检测一下总线上是否有其他站点在发送帧
碰撞检测CD:每一个正在发送帧的同时,一边发送帧一边检测。一旦发现总线上出现碰撞,则立即停止发送,退避一段随机时间后再次重新发送

这三个特性都还比较好理解,多点接入也就是一条线上有多个主机,它们随机发送信息就有可能产生碰撞;载波监听就是再发送数据前,要先检测一下现在有没有其他主机在发送,如果有就先不发送;碰撞检测就是在发送数据的时候,要确保数据发送的时候没有发生碰撞。

而三者的英文缩写分别是MACSCD,因此该协议称为CSMA/CD协议。

第一个问题就是,主机明明在发送数据之前,就已经检测了信道上有没有主机在发送数据,为什么还有可能会发生碰撞?

我们看到以下情况:

在这里插入图片描述
现在整个信道上都没有信号传输,A检测到信道空闲,发送数据。

在这里插入图片描述

A发送信号不久后,此时信号还没有传送到D,D也想发送信号,D检测到信道空闲,也发送了信号。于是两个信号就会发生碰撞:

在这里插入图片描述

也就是说,电磁波在信道上传播的速率是有限的,当计算机监听到信道空闲而发送数据时,有可能已经有其它计算机在发送数据了

现在规定,一条信道中,最远的两台主机之间发送信号所需的时延为 τ \tau τ τ \tau τ音同“涛”。以上例子中,A和D就是该信道里面最远的两台主机,假设A发送数据的时间节点为0,那么该数据到达D的时间节点就是 τ \tau τ,而D在 τ − δ \tau - \delta τδ时刻发送了数据:

在这里插入图片描述

那么有以下重要时间点:

发生碰撞的时间为 τ − δ 2 {\color{red}\tau - \frac{\delta}{2}} τ2δ
D检测到碰撞的时间为 τ {\color{red}\tau} τ
A检测到碰撞的时间为 2 τ − δ {\color{red}2\tau - \delta} 2τδ

δ \delta δ可以视为是在即将接收到A信号前的 δ \delta δ时间,D发送了数据。当 δ \delta δ趋近于0,那么A检测到碰撞的时间就越接近 2 τ {\color{red}2\tau} 2τ。因为此时A和D已经是信道中最远的两台主机了,因此可以理解为一台主机发送一个信号,最多经过 2 τ {\color{red}2\tau} 2τ的时间,就可以确定自己是否发生了碰撞。因为只有在 2 τ {\color{red}2\tau} 2τ时间内,才有可能有其他主机发送数据产生碰撞,一旦过了 2 τ {\color{red}2\tau} 2τ的时间,所有主机一旦想发送数据,就会先进性载波监听,发现信道已经被占用了,就不会再发送数据了。

其中 2 τ {\color{red}2\tau} 2τ被称为争用期或者碰撞窗口,以太网中争用期被规定为 51.2 μ s 51.2\mu s 51.2μs。主机发送数据的同时,只需要进行 2 τ 2\tau 2τ时间的载波监听,就可以不再进行监听了,因为后续传送的数据一定不会发生碰撞。

显然,在以太网中主机越多,端到端的往返时延越大,发生碰撞的概率就越大。因此共享式以太网不能连接太多主机,使用的总线也不能太长

10Mb/s的以太网把争用期定为512比特发送时间,即 51.2 μ s 51.2\mu s 51.2μs,因此其总线长度不能超过5120m,但是由于一些其它因素,比如信号衰减等,以太网规定总线长度不能超过2500m。

现在我们讲解完了什么情况下会碰撞,以及如何检测出碰撞。那么两个信号发生碰撞后,要怎么办呢?


截断二进制指数退避算法

当两个主机发送的数据发生碰撞后,都要进行一个退避操作,简单来说就是过一会再发送一次,那么过一会是多久呢?如果说退避时长差不多,那么两主机过一段时间后同时发送,又会发生碰撞,因此这个退避时间必须是随机的。在CSMA/CD协议中,采用了截断二进制指数退避算法来进行退避操作,以产生随机的数值进行退避,确保主机碰撞后退避的时间不同。

算法如下:

  1. 规定基本退避时间为 2 τ 2\tau 2τ
  2. 定义参数 k = min(重传次数, 10)
  3. 从整数区间[0, 2 k − 1 2^{k} - 1 2k1]随机选一个数字r,最后的退避时间为 r × 2 τ {\color{Red} r \times 2\tau } r×2τ
  4. 如果重传16次依然不成功,丢弃该帧并向高层汇报

接下来我再详细讲解以上算法的执行过程。

首先要设置一个基本的退避时间,该时间被设置为 2 τ 2\tau 2τ。而最后的总退避时间,就等于一个随机数r乘以这个基本退避时间 2 τ 2\tau 2τ,也就是 r × 2 τ {\color{Red} r \times 2\tau } r×2τ

那么现在的问题就是,要如何生成这个随机数r。该随机数r取自一个区间[0, 2 k − 1 2^{k} - 1 2k1],而这个k不是一个固定的数值,其与重传次数相关。

  • 如果重传次数小于10,那么 k 就是重传次数
  • 如果重传此处大于10,那么 k = 10

比如说当前是第2次重传,那么k = 2,r的取值范围就是[0, 2 2 − 1 2^{2} - 1 221],也就是[0, 3]。最后r在这个区间内随机取一个值,最终的退避时间就是 r × 2 τ r \times 2\tau r×2τ

再比如当前是第14次重传,由于重传次数超过10,那么k = 10,r的取值范围就是[0, 2 10 − 1 2^{10} - 1 2101],也就是[0, 1023]。最后r在这个区间内随机取一个值,最终的退避时间就是 r × 2 τ r \times 2\tau r×2τ

随机数 r 是从离散的整数集合[0, 2 k − 1 2^{k} - 1 2k1]中随机选出的一个数,这也是该算法名称截断二进制指数称谓的由来。


帧长与帧间间隔

最短帧长

假设主机 A 正在给主机 D 发送一个很短的帧,边发送边检测碰撞,主机 A 很快就将该帧发送完毕了,之后就不再对该帧检测碰撞:

在这里插入图片描述

在该帧的传输过程中,主机 C 也要发送帧,主机 C 检测到总线空闲后就立即发送帧。

在这里插入图片描述

这必然会产生碰撞,主机 D 最终会收到主机 A 发送的并遭遇碰撞的帧。主机 D 会将该帧丢弃,但对于主机 A 而言,他并不知道自己已发送完毕的该帧在总线上传输的过程中遭遇了碰撞,因此不会重发该帧。很显然,使用CSMA/CD协议的以太网的帧长不能太短。

以太网规定最小帧长为 64 字节,即 512 个比特,而发送 512 个比特的时间即为争用期。如果要发送的数据非常少,那么必须加入一些填充字节,使帧长不小于 64 字节以太网的最小帧长确保了主机可在帧发送完成之前就检测到该帧在发送过程中是否遭遇了碰撞

最大帧长

假设主机 A 正在给主机 D 发送一个很长的帧:
在这里插入图片描述

这会使得主机 A 长时间占用总线,而总线上的其他主机迟迟拿不到总线的使用权。另外,由于帧很长,还可能导致主机 D 的接收缓冲区无法装下该帧而产生溢出,因此以太网的帧长应该有其上限。

例如这是以太网版本 2 的MAC帧格式:
在这里插入图片描述

  • 最大帧长:其数据载荷的最大长度为 1500 字节,加上首部和尾部共 18 字节,帧的最大长度为 1518 字节

  • 最短帧长:数据载荷的最小长度不能小于 46 字节,这样加上首部和尾部共 18 字节,正好满足帧的最小长度为 64 字节

帧间间隔

另外,以太网还规定帧间最小间隔为 9.6 μ s 9.6\mu s 9.6μs在没有发生碰撞的情况下,一台计算机即使检测到信道空闲,也要等 9.6 μ s 9.6\mu s 9.6μs才能再次发送数据

这是为例使刚刚收到数据帧的计算机的缓存来得及清理,为接收下一帧做好准备。


信道利用率

接下来我们来讨论一下使用 CSMA/CD 协议的共享式以太网的信道利用率。如图所示,横坐标为时间:

在这里插入图片描述

总线上的某个主机可能发生多次碰撞,进行多次退避后成功发送了一个帧,最后帧经过发送时延 T 0 T_{0} T0把数据发送了出去。

在最极端的情况下,两台主机处于总线两端,因此还要经过一个单程端到端的传播时延后,总线才能完全进入空闲状态。因此发送一帧所需的平均时间为多个争用期 2 τ 2\tau 2τ 加上一个帧的发送时延 T 0 T_{0} T0,再加上一个单程端到端的传播时延 τ \tau τ

发送一帧的时间 = n × 2 τ + T 0 + τ 发送一帧的时间 = n \times 2\tau + T_{0} +\tau 发送一帧的时间=n×2τ+T0+τ

考虑以下这种理想情况,各主机发送帧都不会产生碰撞,总线一旦空闲,就有某个主机立即发送帧。发送一帧所占用总线的时间为 T 0 T_{0} T0,加上传播时延 τ \tau τ。这样就可得出极限信道利用率的表达式:

S max ⁡ = T 0 T 0 + τ S_{\max }=\frac{T_{0}}{T_{0}+\tau} Smax=T0+τT0

在以太网中,我们把参数a定为 τ \tau τ T 0 T_{0} T0之比:

a = τ T 0 a=\frac{\tau}{T_{0}} a=T0τ

因此极限信道利用率可以写为:
S max ⁡ = T 0 T 0 + τ = 1 1 + a S_{\max }=\frac{T_{0}}{T_{0}+\tau}=\frac{1}{1+a} Smax=T0+τT0=1+a1

为了提高信道利用率,参数 a 的值应尽量小,要是参数 a 的值尽量小, τ \tau τ的值应该尽量小。这意味着端到端的距离应受到限制,不应太长,而 T 0 T_{0} T0 的值应当尽量大。这意味着以太网的帧长应尽量大一些


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/528213.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode-347. 前 K 个高频元素【数组 哈希表 分治 桶排序 计数 快速选择 排序 堆(优先队列)】

LeetCode-347. 前 K 个高频元素【数组 哈希表 分治 桶排序 计数 快速选择 排序 堆(优先队列)】 题目描述:解题思路一:哈希表记录出现次数,然后用最小堆取,因为每次都是弹出最小的,剩下的一定是K…

CentOS7安装MySQL8.0教程

环境介绍 操作系统:Centos7.6 MySQL版本: 8.0.27 只要是8.0.*版本,那就可以按照本文说明安装 一、安装前准备 1、卸载MariaDB 安装MySQL的话会和MariaDB的文件冲突,所以需要先卸载掉MariaDB。 1.1、查看是否安装mariadb rpm -…

SQL注入利用学习-Union联合注入

联合注入的原理 在SQL语句中查询数据时,使用select 相关语句与where 条件子句筛选符合条件的记录。 select * from person where id 1; #在person表中,筛选出id1的记录如果该id1 中的1 是用户可以控制输入的部分时,就有可能存在SQL注入漏洞…

自媒体内容创作助手:7款必备ai写作工具一览! #学习方法#科技#其他

这些工具不仅可以快速生成高质量的文本内容,还可以根据用户的需求进行个性化定制。它们可以帮助我们节省大量的时间和精力,让我们更加专注于创意和细节的打磨。本文将为大家详细介绍几个AI写作工具,让你在写作领域更上一层楼。 1.七燕写作 这…

【随笔】Git 高级篇 -- 撤销变更 reset | revert(十四)

💌 所属专栏:【Git】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! 💖 欢迎大…

uniapp项目问题及解决(前后端互联)

1.路由跳转的问题 uni.navigateTo() 保留当前页面,跳转到应用内的某个页面,使用uni.navigateBack可以返回到原页面 uni.redirectTo() 关闭当前页面,跳转到应用内的某个页面。 uni.reLaunch&…

探索未来产业:新技术、新商业、新趋势

引言 随着科技的迅速发展和全球经济的不断变化,未来产业已经成为全球关注的焦点之一。未来产业的兴起不仅代表着新的商业机遇,更是对传统产业模式的颠覆和重构。在这个充满挑战和机遇的时代,我们不得不认真思考未来产业的重要性和前景。 未…

STM32之HAL开发——FatFs文件系统移植

FatFs文件系统移植 FatFs 程序结构图 移植 FatFs 之前我们先通过 FatFs 的程序结构图了解 FatFs 在程序中的关系网络 用户应用程序需要由用户编写,想实现什么功能就编写什么的程序,一般我们只用到 f_mount()、f_open()、 f_write()、f_read() 就可以…

在【Cencos7】中安装【Nacos】并适配【PostgreSQL】数据库

在【Cencos7】中安装【Nacos-2.3.0】并适配【PostgreSQL】数据库 安装JDK wget命令下载: wget https://repo.huaweicloud.com/java/jdk/8u151-b12/jdk-8u151-linux-x64.tar.gz解压 tar -xzvf jdk-7u80-linux-x64.tar.gz将解压后的目录移动到/opt下 sudo mv jdk…

unity_Button:单击的三种实现方式

1.针对特定单个按钮 此代码直接绑定到button上面无需其他操作 using UnityEngine; using UnityEngine.UI;public class PrintHelloOnButtonClick : MonoBehaviour {private Button button;void Start(){// 获取当前GameObject上的Button组件button GetComponent<Button&g…

【Redis系列】Spring Boot 集成 Redis 实现缓存功能

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

[C语言]——动态内存管理

目录 一.为什么要有动态内存分配 二.malloc和free 1.malloc 2.free 三.calloc和realloc 1.calloc 2.realloc 3.空间的释放​编辑 四.常见的动态内存的错误 1.对NULL指针的解引用操作 2.对动态开辟空间的越界访问 3.对非动态开辟内存使用free释放 4.使用free释放⼀块…

嘉轩智能工业科技诚邀您参观2024第13届生物发酵展

参展企业介绍 自2005年成立以来&#xff0c;嘉轩一直致力于工业智能永磁滚筒的研发、制造及销售&#xff0c;具有十多年的从业经验&#xff0c;公司主营产品包括工业智能永磁滚筒、机电智能诊断、工业智能电机等&#xff0c;高效智能自驱动永磁滚筒为我公司目前主导产品&#x…

【C++】——list的介绍及使用 模拟实现

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 文章目录 前言 一、list的介绍及使用 1.1 list的介绍 1.2 list的使用 1.2.1 list的构造 1.2.2 list iterator的使用 1.2.3 list capacity 1.2.4 list element access 1.…

CSS导读 (Emmet语法)

&#xff08;大家好&#xff0c;今天我们将继续来学习CSS的相关知识&#xff0c;大家可以在评论区进行互动答疑哦~加油&#xff01;&#x1f495;&#xff09; 目录 续&#xff1a;七、Chrome调试工具 一、Emmet语法 1.1 快速生成HTML结构语法 1.2 快速生成CSS样式语法 &…

从概念到实践:揭开枚举与联合体在数字化创新时代的神秘面纱

欢迎来到白刘的领域 Miracle_86.-CSDN博客 系列专栏 C语言知识 先赞后看&#xff0c;已成习惯 创作不易&#xff0c;多多支持&#xff01; 在编程的世界中&#xff0c;枚举和联合体是两种非常基础且重要的数据结构。它们各自具有独特的特点和用途&#xff0c;为程序员提供…

【人工智能】AI赋能城市交通 未来城市的驱动力

前言 随着城市化进程的不断加速&#xff0c;交通拥堵、环境污染等问题日益凸显&#xff0c;人们对交通系统的效率和可持续性提出了更高的要求。在这样的背景下&#xff0c;智能交通技术正成为改善城市交通的重要驱动力。本文将探讨智能交通技术在解决城市交通挑战方面的应用和未…

算法打卡26

今日任务&#xff1a; 1&#xff09;332.重新安排行程 2&#xff09;51.N皇后 3&#xff09;37.解数独 332.重新安排行程 题目链接&#xff1a;332. 重新安排行程 - 力扣&#xff08;LeetCode&#xff09; 给定一个机票的字符串二维数组 [from, to]&#xff0c;子数组中的两个…

Junit单元测试框架 --java学习笔记

单元测试 就是针对最小的功能单元(方法)&#xff0c;编写测试代码对其进行正确性测试 之前是如何进行单元测试的?有什么问题? 只能在main方法编写测试代码&#xff0c;去调用其他方法进行测试无法实现自动化测试&#xff0c;一个方法测试失败&#xff0c;可能影响其他方法…

Android Studio 生成 keystore 签名文件及打包验证流程

一、创建keystore签名文件 1、在菜单栏中&#xff0c;依次点击 Build - Generate Signed Bundle/Apk...(生成签名) 2、选择 APK 选项&#xff0c;点击按钮 Next 到下一步 3、新建key store秘钥文件&#xff0c;点击按钮 Next 到下一步 4、按如下提示填写信息&#xff0c;点击按…