【C++】——list的介绍及使用 模拟实现

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

目录

文章目录

前言

一、list的介绍及使用

1.1 list的介绍

1.2 list的使用

1.2.1 list的构造

1.2.2 list iterator的使用

1.2.3 list capacity

1.2.4 list element access

1.2.5 list modifiers

1.2.6 list的迭代器失效

二、 list的模拟实现

​编辑

三、 list与vector的对比

总结



前言

世上有两种耀眼的光芒,一种是正在升起的太阳,一种是正在努力学习编程的你!一个爱学编程的人。各位看官,我衷心的希望这篇博客能对你们有所帮助,同时也希望各位看官能对我的文章给与点评,希望我们能够携手共同促进进步,在编程的道路上越走越远!


提示:以下是本篇文章正文内容,下面案例可供参考

一、list的介绍及使用

1.1 list的介绍

list的文档介绍

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
  3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。
  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list 的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

1.2 list的使用

list中的接口比较多,此处类似,只需要掌握如何正确的使用,然后再去深入研究背后的原理,已达到可扩展的能力。以下为list中一些常见的重要接口。

1.2.1 list的构造

构造函数(constructor)接口说明
list (size_type n, const value_type& val = value_type())构造的list中包含n个值为val的元素
list()构造空的list
list (const list& x)拷贝构造函数
list (InputIterator first, InputIterator last)用[first, last)区间中的元素构造list

list的构造使用代码演示

1.2.2 list iterator的使用

此处,大家可暂时将迭代器理解成一个指针,该指针指向list中的某个节点。

函数声明接口说明
begin + end返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin + rend返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的 reverse_iterator,即begin位置

【注意】

  1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动
  2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

1.2.3 list capacity

函数声明接口说明
empty检测list是否为空,是返回true,否则返回false
size返回list中有效节点的个数

1.2.4 list element access

函数声明接口说明
front返回list的第一个节点中值的引用
back返回list的最后一个节点中值的引用

1.2.5 list modifiers

函数声明接口说明
push_front在list首元素前插入值为val的元素
pop_front删除list中第一个元素
push_back在list尾部插入值为val的元素
pop_back删除list中最后一个元素
insert在list position 位置中插入值为val的元素
erase删除list position位置的元素
swap交换两个list中的元素
clear清空list中的有效元素

list的插入和删除使用代码的演示

list中还有一些操作,需要用到时大家可参阅list的文档说明。

1.2.6 list的迭代器失效

前面说过,此处大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。

void TestListIterator1()
{
	int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	list<int> l(array, array + sizeof(array) / sizeof(array[0]));

	auto it = l.begin();
	while (it != l.end())
	{
		// erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给其赋值
			l.erase(it);
		++it;
	}
}

// 改正
void TestListIterator()
{
	int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	list<int> l(array, array + sizeof(array) / sizeof(array[0]));
	auto it = l.begin();
	while (it != l.end())
	{
		l.erase(it++);// it = l.erase(it);
	}
}

二、 list的模拟实现

Test.cpp
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
#include<vector>
#include<list>
#include<algorithm>
using namespace std;

void test_op1()
{
	srand(time(0));
	const int N = 1000000;

	list<int> lt1;
	list<int> lt2;

	vector<int> v;

	for (int i = 0; i < N; ++i)
	{
		auto e = rand() + i;
		lt1.push_back(e);
		v.push_back(e);
	}

	int begin1 = clock();
	// vector用算法排序
	sort(v.begin(), v.end());
	int end1 = clock();

	int begin2 = clock();
	// list用自己的排序方法
	lt1.sort();
	int end2 = clock();

	printf("vector sort:%d\n", end1 - begin1);
	printf("list sort:%d\n", end2 - begin2);
}

void test_op2()
{
	srand(time(0));
	const int N = 1000000;

	list<int> lt1;
	list<int> lt2;

	for (int i = 0; i < N; ++i)
	{
		auto e = rand();
		lt1.push_back(e);
		lt2.push_back(e);
	}

	int begin1 = clock();
	// vector

	vector<int> v(lt2.begin(), lt2.end());// 用迭代器区间进行初始化,相当于数据拷贝给vector
	// 让vector来排序
	sort(v.begin(), v.end());

	// lt2 再将数据拷贝回给list
	lt2.assign(v.begin(), v.end());

	int end1 = clock();

	int begin2 = clock();
	lt1.sort();// 直接排序
	int end2 = clock();

	printf("list copy vector sort copy list sort:%d\n", end1 - begin1);
	printf("list sort:%d\n", end2 - begin2);
}
//
//int main()
//{
//	test_op2();
//
//	return 0;
//}

#include"list.h"

int main()
{
	bit::test_list3();

	return 0;
}
list.h
#pragma once
#include<assert.h>

// 原生指针是天然的迭代器,前提是物理空间是连续的

namespace bit
{
	template<class T>
	struct ListNode
	{
		// 数据全部是公有的话,可以用struct
		ListNode<T>* _next;
		ListNode<T>* _prev;
		T _data;

		ListNode(const T& x = T())
			:_next(nullptr)
			, _prev(nullptr)
			, _data(x)
		{}
	};

	// typedef ListIterator<T, T&, T*> iterator;
	// typedef ListIterator<T, const T&, const T*> const_iterator;

	// 期望:通过原生指针(Node*)来遍历链表,但是每个节点在物理空间上的地址不连续,没办法遍历;
	// 而且解引用也拿不到节点对象中对应的数据。
	// 原生指针(节点的指针)不满足我们的预期,所以我们用类将原生指针封装一下,自定义类型可以重载运算符,就可以掌控它的行为
	template<class T, class Ref, class Ptr>
	// Ref:Reference(引用)   Ptr:pointer(指针)
	struct ListIterator
	{
		typedef ListNode<T> Node;
		typedef ListIterator<T, Ref, Ptr> Self;

		Node* _node;// 指针都是内置类型

		ListIterator(Node* node)
			:_node(node)
		{}

		// *it
		//T& operator*()
		Ref operator*()
		{
			return _node->_data;
		}

		// it->
		//T* operator->()
		Ptr operator->()
		{
			return &_node->_data;// 返回的是结构体A的地址
		}

		// ++it
		Self& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		Self operator++(int)
		{
			Self tmp(*this);
			_node = _node->_next;

			return tmp;
		}

		Self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		Self operator--(int)
		{
			Self tmp(*this);
			_node = _node->_prev;

			return tmp;
		}

		bool operator!=(const Self& it)
		{
			return _node != it._node;
		}

		bool operator==(const Self& it)
		{
			return _node == it._node;
		}
	};

	//template<class T>
	//struct ListConstIterator
	//{
	//	typedef ListNode<T> Node;
	//	typedef ListConstIterator<T> Self;

	//	Node* _node;

	//	ListConstIterator(Node* node)
	//		:_node(node)
	//	{}

	//	// *it
	//	const T& operator*()
	//	{
	//		return _node->_data;
	//	}

	//	// it->
	//	const T* operator->()
	//	{
	//		return &_node->_data;
	//	}

	//	// ++it
	//	Self& operator++()
	//	{
	//		_node = _node->_next;
	//		return *this;
	//	}

	//	Self operator++(int)
	//	{
	//		Self tmp(*this);
	//		_node = _node->_next;

	//		return tmp;
	//	}

	//	Self& operator--()
	//	{
	//		_node = _node->_prev;
	//		return *this;
	//	}

	//	Self operator--(int)
	//	{
	//		Self tmp(*this);
	//		_node = _node->_prev;

	//		return tmp;
	//	}

	//	bool operator!=(const Self& it)
	//	{
	//		return _node != it._node;
	//	}

	//	bool operator==(const Self& it)
	//	{
	//		return _node == it._node;
	//	}
	//};

	template<class T>
	class list
	{
		typedef ListNode<T> Node;
	public:
		//typedef ListIterator<T> iterator;// 将迭代器的类型重命名为iterator,不管迭代器是什么类型,都不重要了
		 
		// const的迭代器怎么搞呢?
		// 1、单独搞一个const迭代器的类模板;2、一个普通迭代器,一个const的迭代器,有点冗余了,可以用一个模板参数来控制
		//typedef ListConstIterator<T> const_iterator;

		typedef ListIterator<T, T&, T*> iterator;
		typedef ListIterator<T, const T&, const T*> const_iterator;

		// 方法一:
		//iterator begin()
		//{
		//	//return iterator(_head->_next);// return后面的代码就是一个匿名对象
		//	iterator it(_head->_next);// iterator的构造函数(有名对象)
		//	return it;
		//}

		// 方法二:单参数的构造函数具有隐式类型转换
		// 普通的迭代器会被修改
		iterator begin()
		{
			return _head->_next;
		}

		iterator end()
		{
			return _head;
		}

		// const迭代器,需要是迭代器(返回的是指针)不能修改,还是迭代器指向的内容?
		// 迭代器指向的内容不能修改!const iterator不是我们需要const迭代器,const修饰的是iterator(一个自定义类型)

		// T* const p1
		// const T* p2
		const_iterator begin() const
		{
			return _head->_next;
		}
		// 为什么const_iterator要加中间的下划线呢?因为const iterator是使迭代器不能被修改,不是我们需要的const迭代器。
		// 所以const的迭代器并不是在普通迭代器前面加上一个const,而是创建了一个新的const_iterator类型。
		const_iterator end() const
		{
			return _head;
		}

		void empty_init()
		{
			_head = new Node;
			_head->_next = _head;
			_head->_prev = _head;

			_size = 0;
		}
		// 无参的构造函数
		list()
		{
			empty_init();
		}

		// lt2(lt1)
		list(const list<T>& lt)
		{
			empty_init();// 先搞一个哨兵位的头节点,自己指向自己
			// 这里的e前面要加引用,因为T有可能是string类型,如果是string类型的话,不加引用,又是浅拷贝
			for (auto& e : lt)
			{
				push_back(e);
			}
		}

		// 需要析构,一般就需要自己写深拷贝
		// 不需要析构,一般就不需要自己写深拷贝,默认浅拷贝就可以

		void swap(list<T>& lt)
		{
			std::swap(_head, lt._head);
			std::swap(_size, lt._size);
		}

		// lt1 = lt3
		list<T>& operator=(list<T> lt)
		{
			swap(lt);
			return *this;
		}
		// 清掉所有数据,但是没有清掉头节点的数据
		void clear()
		{
			iterator it = begin();
			while (it != end())
			{
				it = erase(it);
			}
		}

		~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}

		/*void push_back(const T& x)
		{
			Node* newnode = new Node(x);
			Node* tail = _head->_prev;

			tail->_next = newnode;
			newnode->_prev = tail;
			newnode->_next = _head;
			_head->_prev = newnode;
		}*/

		void push_back(const T& x)
		{
			insert(end(), x);
		}

		void push_front(const T& x)
		{
			insert(begin(), x);
		}

		void pop_back()
		{
			erase(--end());
		}

		void pop_front()
		{
			erase(begin());
		}

		void insert(iterator pos, const T& val)
		{
			Node* cur = pos._node;
			Node* newnode = new Node(val);
			Node* prev = cur->_prev;

			// prev newnode cur;
			prev->_next = newnode;
			newnode->_prev = prev;
			newnode->_next = cur;
			cur->_prev = newnode;
			_size++;
		}

		iterator erase(iterator pos)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* next = cur->_next;

			prev->_next = next;
			next->_prev = prev;
			delete cur;
			_size--;

			return iterator(next);
		}

		size_t size() const
		{
			return _size;
		}

		bool empty()
		{
			return _size == 0;
		}

	private:
		Node* _head;
		size_t _size;
	};


	void test_list1()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);
		lt.push_back(5);
		// 不同的容器,它们内部的迭代器的类型都是不同的
		list<int>::iterator it = lt.begin();
		// 内嵌类型:1、类部类;2、typedef
		// iterator这个类型属于list<int>这个类域
		while (it != lt.end())
		{
			*it += 10;
			cout << *it << " ";
			++it;
		}
		cout << endl;

		lt.push_front(10);
		lt.push_front(20);
		lt.push_front(30);

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		lt.pop_back();
		lt.pop_back();
		lt.pop_front();
		lt.pop_front();

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;
	}

	struct A
	{
		int _a1;
		int _a2;

		A(int a1 = 0, int a2 = 0)
			:_a1(a1)
			, _a2(a2)
		{}
	};

	void test_list2()
	{
		list<A> lt;
		A aa1(1, 1);
		A aa2 = { 1, 1 };// 多参数的构造函数也可以支持隐式类型转换
		lt.push_back(aa1);
		lt.push_back(aa2);
		lt.push_back(A(2, 2));
		lt.push_back({ 3, 3 });// 隐式类型转换
		lt.push_back({ 4, 4 });

		A* ptr = &aa1;
		(*ptr)._a1;
		ptr->_a1;

		list<A>::iterator it = lt.begin();
		while (it != lt.end())
		{
			//*it += 10;
			// cout << *it << " ";// 流插入不支持自定义类型,如果想要流插入支持自定义类型:
			// 1、自己写一个流插入的运算符重载;2、数据是共有的
			// *it是调用operator*()函数,返回的是A的对象
			//cout << (*it)._a1 << ":" << (*it)._a2 << endl;
			cout << it->_a1 << ":" << it->_a2 << endl;
			cout << it.operator->()->_a1 << ":" << it.operator->()->_a2 << endl;

			++it;
		}
		cout << endl;
	}

	void PrintList(const list<int>& clt)
	{
		list<int>::const_iterator it = clt.begin();
		while (it != clt.end())
		{
			//*it += 10;

			cout << *it << " ";
			++it;
		}
		cout << endl;
	}

	void test_list3()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);
		lt.push_back(5);

		PrintList(lt);

		list<int> lt1(lt);
		PrintList(lt1);
	}
}

三、 list与vector的对比

vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不同,其主要不同如下:

vectorlist
底 层 结 构动态顺序表,一段连续空间带头结点的双向循环链表
随 机 访 问支持随机访问,访问某个元素效率O(1)不支持随机访问,访问某个元素 效率O(N)
插 入 和 删 除任意位置插入和删除效率低,需要搬移元素,时间复杂 度为O(N),插入时有可能需要增容,增容:开辟新空 间,拷贝元素,释放旧空间,导致效率更低任意位置插入和删除效率高,不 需要搬移元素,时间复杂度为 O(1)
空 间 利 用 率底层为连续空间,不容易造成内存碎片,空间利用率 高,缓存利用率高底层节点动态开辟,小节点容易 造成内存碎片,空间利用率低, 缓存利用率低
迭 代 器原生态指针对原生态指针(节点指针)进行封装
迭 代 器 失 效在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效插入元素不会导致迭代器失效, 删除元素时,只会导致当前迭代器失效,其他迭代器不受影响
使 用 场 景需要高效存储,支持随机访问,不关心插入删除效率大量插入和删除操作,不关心随 机访问


总结

好了,本篇博客到这里就结束了,如果有更好的观点,请及时留言,我会认真观看并学习。
不积硅步,无以至千里;不积小流,无以成江海。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/528184.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CSS导读 (Emmet语法)

&#xff08;大家好&#xff0c;今天我们将继续来学习CSS的相关知识&#xff0c;大家可以在评论区进行互动答疑哦~加油&#xff01;&#x1f495;&#xff09; 目录 续&#xff1a;七、Chrome调试工具 一、Emmet语法 1.1 快速生成HTML结构语法 1.2 快速生成CSS样式语法 &…

从概念到实践:揭开枚举与联合体在数字化创新时代的神秘面纱

欢迎来到白刘的领域 Miracle_86.-CSDN博客 系列专栏 C语言知识 先赞后看&#xff0c;已成习惯 创作不易&#xff0c;多多支持&#xff01; 在编程的世界中&#xff0c;枚举和联合体是两种非常基础且重要的数据结构。它们各自具有独特的特点和用途&#xff0c;为程序员提供…

【人工智能】AI赋能城市交通 未来城市的驱动力

前言 随着城市化进程的不断加速&#xff0c;交通拥堵、环境污染等问题日益凸显&#xff0c;人们对交通系统的效率和可持续性提出了更高的要求。在这样的背景下&#xff0c;智能交通技术正成为改善城市交通的重要驱动力。本文将探讨智能交通技术在解决城市交通挑战方面的应用和未…

算法打卡26

今日任务&#xff1a; 1&#xff09;332.重新安排行程 2&#xff09;51.N皇后 3&#xff09;37.解数独 332.重新安排行程 题目链接&#xff1a;332. 重新安排行程 - 力扣&#xff08;LeetCode&#xff09; 给定一个机票的字符串二维数组 [from, to]&#xff0c;子数组中的两个…

Junit单元测试框架 --java学习笔记

单元测试 就是针对最小的功能单元(方法)&#xff0c;编写测试代码对其进行正确性测试 之前是如何进行单元测试的?有什么问题? 只能在main方法编写测试代码&#xff0c;去调用其他方法进行测试无法实现自动化测试&#xff0c;一个方法测试失败&#xff0c;可能影响其他方法…

Android Studio 生成 keystore 签名文件及打包验证流程

一、创建keystore签名文件 1、在菜单栏中&#xff0c;依次点击 Build - Generate Signed Bundle/Apk...(生成签名) 2、选择 APK 选项&#xff0c;点击按钮 Next 到下一步 3、新建key store秘钥文件&#xff0c;点击按钮 Next 到下一步 4、按如下提示填写信息&#xff0c;点击按…

微服务篇面试题

1、SpringCloud的组件有哪些&#xff1f; 2、负载均衡如何实现&#xff1f; 3、什么是服务雪崩&#xff1f;怎么解决&#xff1f; 4、项目中有没有做过限流&#xff1f; Tomcat单体可以&#xff0c;分布式不适合 5、解释一下CAP和BASE P&#xff1a;加入node03这边的网络断了&a…

逆向案例十六——简单webpack逆向,财联社信息

网址链接&#xff1a;财联社A股24小时电报-上市公司动态-今日股市行情报道 数据包sign参数为加密&#xff0c;可以直接搜索找参数的位置&#xff0c;搜索不到的情况下&#xff0c;在断点跟栈&#xff1a; 确定js文件所在位置&#xff0c;并打上断点。 点击加载刷新页面。可以发…

diffusion model(十五) : IP-Adapter技术小结

infopaperhttps://arxiv.org/pdf/2308.06721.pdfcodehttps://github.com/tencent-ailab/IP-Adapterorg.Tencent AI Lab个人博客地址http://myhz0606.com/article/ip_adapter 1 Motivation 为了对文生图diffusion model进行特定概念的定制&#xff0c;常用LoRA[1]、textual in…

一种驱动器的功能安全架构介绍

下图提供了驱动器实现安全功能的架构 具有如下特点&#xff1a; 1.通用基于总线或者非总线的架构。可以实现ethercat的FSOE&#xff0c;profinet的profisafe&#xff0c;或者伺服本体安全DIO现实安全功能。 2.基于1oo2D架构&#xff0c;安全等级可以达到sil3。 3.高可用性。单…

【数据库】PostgreSQL源码编译安装方式与简单配置(v16.2)

PostgreSQL源码编译安装方式与简单配置&#xff08;v16.2&#xff09; 一、PostgreSQL安装基本介绍1.1 几种PostgreSQL的安装方式1.2 删除原有的PostgreSQL1.3 编译安装过程简介 二、源码编译安装方式详情2.1 下载源代码2.2 编译安装运行 configure执行 make执行 make install …

制造业、能源等传统行业进行数字化转型时要注意哪些问题?

制造业、能源等传统行业在进行数字化转型时需要注意以下几个关键问题&#xff1a; 1、明确转型目标和战略规划&#xff1a;企业需要根据自身的业务特点、市场需求和长远发展目标&#xff0c;制定清晰的数字化转型战略。包括确定转型的重点领域、预期成果、时间表和资源投入。 …

【二叉树】【递归】Leetcode 543. 二叉树的直径

【二叉树】【递归】Leetcode 543. 二叉树的直径 解法1 ---------------&#x1f388;&#x1f388;题目链接&#x1f388;&#x1f388;------------------- 解法1 class Solution {int result 0; // 定义一个全局变量result收获每一个节点为转折点的长度public int diame…

Python基础语法及应用

一、基本数据类型及应用 1、基本数据 &#xff08;1&#xff09;整数&#xff08;int&#xff09; 在 Python 中&#xff0c;整数是一种基本的数据类型&#xff0c;用于表示没有小数部分的数字&#xff0c;整数没有固定的最大值&#xff0c;可以根据系统内存动态调整。Pytho…

LeetCode-移除元素

题目 给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须仅使用 O(1) 额外空间并 原地 修改输入数组。 元素的顺序可以改变。你不需要考虑数组中超出新长…

最简单知识点PyTorch中的nn.Linear(1, 1)

一、nn.Linear(1, 1) nn.Linear(1, 1) 是 PyTorch 中的一个线性层&#xff08;全连接层&#xff09;的定义。 nn 是 PyTorch 的神经网络模块&#xff08;torch.nn&#xff09;的常用缩写。 nn.Linear(1, 1) 的含义如下&#xff1a; 第一个参数 1&#xff1a;输入特征的数量…

服务器 安装1Panel服务器运维管理面板

服务器 安装1Panel服务器运维管理面板 SSH链接服务器安装1Panel 出现此提示时输入目标路径&#xff0c;须以“/”开头&#xff0c;默认&#xff1a;/opt&#xff0c;本例&#xff1a;/www。 出现此提示时输入目标端口&#xff0c;须未被使用的端口&#xff0c;默认&#xff1…

媒体邀约专访如何深入地做一篇专访报道?流程分享

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 进行媒体邀约专访并深入撰写一篇专访报道是一个系统性工作&#xff0c;涉及多个环节。以下是一个详细的流程分享&#xff1a; 一、前期准备 确定专访目的与主题&#xff1a;明确专访希望…

一文了解低功耗蓝牙BLE

低功耗蓝牙技术可以构建两种类型的设备:双模设备和单模设备。双模设备既支持经典蓝牙又支持低功耗蓝牙。单模设备只支持低功耗蓝牙。还有仅支持经典蓝牙的设备。 在链路层,设备被分为广播者、扫描者、从设备和主设备。广播者是传输数据包的设备,扫描者是接收广播者的数据包…

华大单片机新建工程步骤

1.新建文件夹&#xff0c;比如00_LED 2.拷贝 hc32f460_ddl_Rev2.2.0\driver 到 00_LED 3.拷贝 hc32f460_ddl_Rev2.2.0\mcu\common 到 00_LED 4.拷贝 hc32f460_ddl_Rev2.2.0\example\ev_hc32f460_lqfp100_v2\gpio\gpio_output\source 到 00_LED 5.拷贝 hc32f460_ddl_Rev2.2.…