政安晨【AIGC实践】(一):在Kaggle上部署使用Stable Diffusion

目录

简述

开始

配置

执行

安装完毕,一键运行

结果展示


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: 人工智能数字虚拟世界实践

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

这篇文章咱们基于Kaggle来快速部署StableDiffusion并进行测试,帮助一些仅仅用SD做点实验的小伙伴快速使用起来。

简述

Stable Diffusion 3 是Stability AI最新的文本到图像模型,在处理多主题提示、卓越的图像质量和拼写准确性方面实现了重大飞跃。目前,该模型正处于早期预览阶段,提供从 800M 到 8B 参数的各种配置,使各种硬件配置的使用更加平民化。

StableDiffusion是一款基于人工智能和图计算技术的AIGC(Artificial Intelligence in Graph Computing)工具。它的主要功能是对图数据进行稳定扩散分析。

稳定扩散分析是一种用于探索数据中的稳定点、传播趋势和影响力的技术。在社交网络、疾病传播模型、舆情分析等领域,稳定扩散分析都有广泛的应用。

StableDiffusion通过分析图数据中的节点和边的关系,可以识别出信息传播的路径和影响力传递的强度。同时,它还可以计算节点的稳定性,即每个节点对传播过程的贡献程度和稳定程度。

StableDiffusion使用了先进的机器学习算法和图计算技术,可以自动发现数据中的隐藏模式和趋势。它能够处理大规模的图数据,并提供高效的计算和可视化工具,帮助用户深入了解数据中的稳定扩散过程。

总而言之,StableDiffusion是一款强大的AIGC工具,可以帮助用户进行稳定扩散分析,并发现数据中的关键信息和趋势。它在社交网络分析、疾病传播模型、舆情分析等领域具有广泛的应用前景。


开始

首次使用时注册并登录Kaggle:

Kaggle: Your Machine Learning and Data Science CommunityKaggle is the world’s largest data science community with powerful tools and resources to help you achieve your data science goals.icon-default.png?t=N7T8https://www.kaggle.com/

Kaggle是一个在线的数据科学竞赛平台和社区,它的目标是为数据科学家和机器学习专家提供一个交流和合作的平台。Kaggle的成员可以参加各种数据科学竞赛,解决现实世界中的数据挑战。这些竞赛涵盖了广泛的主题,包括预测模型建立、图像识别、自然语言处理等。

Kaggle的竞赛通常由数据提供者和参赛者组成。数据提供者提供数据集和问题描述,参赛者可以通过分析数据、应用机器学习算法来解决问题,并提交他们的解决方案和预测结果。Kaggle提供了一套完整的工具和API,方便参赛者进行数据分析、建模和评估。参赛者可以通过排行榜查看自己在竞赛中的排名,并与其他参赛者交流和分享经验。

除了竞赛,Kaggle还拥有一个活跃的社区平台,数据科学家可以在这里分享他们的项目、代码和洞见。Kaggle还举办数据科学讲座和培训活动,为用户提供学习和进阶的机会。同时,Kaggle还允许数据科学家通过与企业和组织合作,解决真实世界的数据挑战,并获得奖金和荣誉。

总之,Kaggle是一个充满活力的数据科学竞赛平台和社区,为数据科学家和机器学习专家提供了一个交流、学习和合作的平台。通过参加Kaggle的竞赛,人们能够锻炼自己的数据分析和建模能力,并将其应用于实际问题的解决中。

你注册Kaggle后,将拥有一套30小时免费使用的环境,按照我下图这样,把GPU配置起来。

配置

# Choose UI language 选择界面语言
import json
import os
from IPython.display import display, HTML
from ipywidgets import Dropdown, Layout

# Function to update the config files based on the selected language
def update_config(language):
    # Define file paths
    config_path = '/kaggle/working/stable-diffusion-webui/config.json'
    theme_config_path = '/kaggle/working/stable-diffusion-webui/extensions/sd-webui-lobe-theme/lobe_theme_config.json'
    
    # Update `config.json`
    config = {}  # Initialize an empty config
    if os.path.exists(config_path):
        with open(config_path, 'r') as file:
            config = json.load(file)
    
    config['localization'] = "None" if language == 'en' else "chinese-english-0313"
    
    with open(config_path, 'w') as file:
        json.dump(config, file, indent=4)
    
    # Update `lobe_theme_config.json`
    theme_config = {}  # Initialize an empty theme config
    if os.path.exists(theme_config_path):
        with open(theme_config_path, 'r') as file:
            theme_config = json.load(file)
    
    theme_config['i18n'] = "en_US" if language == 'en' else "zh_CN"
    
    with open(theme_config_path, 'w') as file:
        json.dump(theme_config, file, indent=4)
    
    print("Config updated to English." if language == 'en' else "配置已更新为简体中文。")

# Apply the font size change to the dropdown
display(HTML("""<style>.widget-dropdown .widget-label { font-size: 22px; }</style>"""))

dropdown = Dropdown(
    options=[('English', 'en'), ('简体中文', 'zh')],
    description="Click to Choose Display Language / 点击选择界面语言",
    style={'description_width': 'initial'},
    layout=Layout(width='50%')
)

dropdown.observe(lambda change: update_config(change.new), names='value')
display(dropdown)

把上面代码复制到单元格中,执行。

不会使用Jupyter Notebook的小伙伴可以参考我的这篇文章:
政安晨的机器学习笔记——示例讲解机器学习工具Jupyter Notebook入门(超级详细)icon-default.png?t=N7T8https://blog.csdn.net/snowdenkeke/article/details/135880886

执行

接下来运行启动参数:

# 启动参数
arguments = '--theme dark --enable-insecure-extension-access --disable-safe-unpickle --no-hashing --xformers'

执行脚本:

%%bash

# 复制数据集路径下的汉化版Stable Diffusion WebUI到工作路径 (Copy dataset to working space)
cp -r /kaggle/input/stable-diffusionwebui/sd_cn_all/stable-diffusion-webui .

# - 项目依赖 Dependency - #
apt-get update
apt-get install -y google-perftools
pip install xformers==0.0.24
python -m pip cache purge

# - remotemoe 内网穿透 Kaggle ( 'https://www.kaggle.com/rumbare' ) - #
mamba install openssh -y
mkdir -p ~/.ssh/
touch ~/.ssh/known_hosts
ssh-keyscan -t rsa remote.moe >> ~/.ssh/known_hosts
rm -rf /root/.ssh/id_rsa
ssh-keygen -t rsa -b 4096 -f /root/.ssh/id_rsa -q -N ""

安装完毕,一键运行

%cd stable-diffusion-webui

# - 安装完毕,去掉下面行首的井号运行 (Remove the hash sign at the beginning of the following line to run after installation is complete) - #
# !python launch.py {arguments} & ssh -R 80:127.0.0.1:7860 -o StrictHostKeyChecking=no -i /root/.ssh/id_rsa remote.moe

当然,您也可以运行左上角的这个,全部执行:

执行过程预计几分钟,请耐心等待。等左边的执行状态不转圈了,表示执行结束。

这是我的配置,尤其注意一些选项打开。

结果展示

部署完成后,在最后这个单元格的执行里,点击该链接。

看到这个表示部署完成:

当然,你的连接肯定与我的不一样,而且每次生成也不一样。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/527104.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2024.4.8-day12-CSS 常用样式属性和字体图标

个人主页&#xff1a;学习前端的小z 个人专栏&#xff1a;HTML5和CSS3悦读 本专栏旨在分享记录每日学习的前端知识和学习笔记的归纳总结&#xff0c;欢迎大家在评论区交流讨论&#xff01; 文章目录 作业2024.4.8-学习笔记盒子阴影文本阴影透明的vertical-align字体使用 作业 &…

2024年网络安全趋势前瞻:从AI攻击到云安全新挑战

随着2024年开展新的序幕&#xff0c;网络安全领域正面临着前所未有的挑战与机遇&#xff0c;一系列引人注目的趋势和预测逐渐浮出水面。 一、AI技术发展引发的安全问题 近年来&#xff0c;我们见证了AI技术的飞速进步&#xff0c;其中ChatGPT等引领潮流的AI服务成为公众瞩目的…

鸿蒙OS实战开发:【多设备自适应服务卡片】

介绍 服务卡片的布局和使用&#xff0c;其中卡片内容显示使用了一次开发&#xff0c;多端部署的能力实现多设备自适应。 用到了卡片扩展模块接口&#xff0c;[ohos.app.form.FormExtensionAbility] 。 卡片信息和状态等相关类型和枚举接口&#xff0c;[ohos.app.form.formInf…

C++要点细细梳理——trivial:运算符优先级、switch、临时变量默认赋值等

1. 运算符优先级 在C语言中&#xff0c;运算符的优先级决定了在表达式中各个运算符的执行顺序。当一个表达式中有多个运算符时&#xff0c;优先级高的运算符会先被计算。如果两个运算符的优先级相同&#xff0c;那么它们的结合性&#xff08;从左到右或从右到左&#xff09;会决…

【优选算法专栏】专题十六:BFS解决最短路问题(二)

本专栏内容为&#xff1a;算法学习专栏&#xff0c;分为优选算法专栏&#xff0c;贪心算法专栏&#xff0c;动态规划专栏以及递归&#xff0c;搜索与回溯算法专栏四部分。 通过本专栏的深入学习&#xff0c;你可以了解并掌握算法。 &#x1f493;博主csdn个人主页&#xff1a;小…

主从复制、数据持久化 、Redis主从集群、哨兵机制 、Redis分片集群

数据持久化 Redis、主从集群、哨兵机制 Redis分片集群 1、单点 redis 的问题2、主从复制2.1 命令传播 3、Redis的持久化3.1 AOF3.2 RDB&#xff08;默认方式&#xff09;RDB 方式&#xff1a;执行快照时&#xff0c;数据能被修改吗&#xff1f;RDB 方式总结 3.3 RDB 和 AOF 组合…

ORAN C平面 Section Extension 22

ORAN C平面Section扩展22用于ACK/NACK请求。除section type 7外&#xff0c;section扩展22可以用于从O-DU发送到O-RU的所有section type和section扩展。 对于一个section描述&#xff0c;O-DU可以使用section扩展22要求O-RU使用section type 8 C平面消息进行ACK/NACK反馈。关于…

ctfshow web入门 web29-web38

web29 把flag和i屏蔽了 system函数也行但是通常会屏蔽所以我直接用passthru 看看有啥 cat的话要查看源代码 web30 没有意外把这个system屏蔽了没事我不用哈哈哈 ?cpassthru("cat f*"); 然后查看源代码 web31 把空格屏蔽了 某位大佬的题解看到的 %09或者/**/绕过…

代码随想录第34天| 1005.K次取反后最大化的数组和 134. 加油站 135. 分发糖果

1005.K次取反后最大化的数组和 1005. K 次取反后最大化的数组和 - 力扣&#xff08;LeetCode&#xff09; 代码随想录 (programmercarl.com) 贪心算法&#xff0c;这不就是常识&#xff1f;还能叫贪心&#xff1f;LeetCode&#xff1a;1005.K次取反后最大化的数组和_哔哩哔…

思维的类比

Learn More, Study Less 中提出了整体学习法&#xff08;Holistic learning&#xff09;&#xff0c;其基本思想是&#xff1a;你不可能孤立地学会一个概念&#xff0c;而只能将其融入已有的概念体系中&#xff0c;从不同角度对其进行刻画来弄懂其内涵和外延并且书中使用三个类…

力扣2- 两数相加

给你两个 非空 的链表&#xff0c;表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的&#xff0c;并且每个节点只能存储 一位 数字。 请你将两个数相加&#xff0c;并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外&#xff0c;这两个数都不会以 0 …

ubuntu安装

一、安装虚拟机 https://www.vmware.com/products/workstation-pro/workstation-pro-evaluation.html 下载后运行安装向导&#xff0c;一直Next即可 许可证&#xff1a; https://zhuanlan.zhihu.com/p/685829787#:~:textpro,17%E5%AF%86%E9%92%A5%EF%BC%9AMC60H-DWHD5-H80U9-6…

单词接龙--C++

目录 题目描述 输入格式 输出格式 输入 输出 一、AC代码 二、代码分析 三、vector加深理解 题目描述 单词接龙是一个与我们经常玩的成语接龙相类似的游戏&#xff0c;现在我们已知一组单词&#xff0c;且给定一个开头的字母&#xff0c;要求出以这个字母开头的最长的“…

【LAMMPS学习】八、基本知识的讨论(1.3)从一个输入脚本运行多个模拟

8. 基本知识的讨论 此部分描述了如何使用 LAMMPS 为用户和开发人员执行各种任务。术语表页面还列出了 MD 术语&#xff0c;以及相应 LAMMPS 手册页的链接。 LAMMPS 源代码分发的 examples 目录中包含的示例输入脚本以及示例脚本页面上突出显示的示例输入脚本还展示了如何设置和…

ICLR24_OUT-OF-DISTRIBUTION DETECTION WITH NEGATIVE PROMPTS

摘要 分布外检测&#xff08;OOD Detection&#xff09;的研究对于开放世界&#xff08;open-world&#xff09;学习非常重要。受大模型&#xff08;CLIP&#xff09;启发&#xff0c;部分工作匹配图像特征和提示来实现文本-图像特征之间的相似性。 现有工作难以处理具有与已…

灵活就业人员规模已达2亿人?财会卷王们如何在“卷卷卷”中脱颖而出?

先来看几个数据&#xff1a; 1️⃣2022年全国大学生毕业人数突破1000万&#xff0c;而2023年突破1100万&#xff1b; 2️⃣有超过200万海外留学生&#xff0c;即将回国就业&#xff1b; 3️⃣全国灵活就业人员规模已达2亿人。 &#xff08;图源&#xff1a;互联网&#xff0…

CSS变换

CSS变换 根据 CSS 的变换的功能特性&#xff0c;它可以分为位移、旋转、缩放、倾斜和透视&#xff1a; 也可以分成2D变换和3D变换&#xff0c;2D变换是二维平面上进行的&#xff0c;即 X 轴和 Y 轴。这些变换不涉及 Z 轴。3D 变换允许元素在三维空间中进行操作&#xff0c;这些…

Linux——计算机进程基础知识

计算机基础知识 1.计算机组成五大部件: (1) 运算器 &#xff1a;也叫算数逻辑单元&#xff0c;完成对数据的各种常规运算&#xff0c;如加减乘除&#xff0c;也包括逻辑运算&#xff0c;移位&#xff0c;比较等。 (2) 控制器 &#xff1a; 它是整个计算机系统的控制中心&…

Maven的scope详解

依赖范围介绍 maven 项目不同的阶段引入到classpath中的依赖是不同的&#xff0c;例如&#xff0c;编译时&#xff0c;maven 会将与编译相关的依赖引入classpath中&#xff0c;测试时&#xff0c;maven会将测试相关的的依赖引入到classpath中&#xff0c;运行时&#xff0c;mav…

三星:HBM4的16层堆叠技术验证成功

随着人工智能、大数据分析、云计算及高端图形处理等领域对高速、高带宽存储需求的激增&#xff0c;下一代高带宽内存&#xff08;High Bandwidth Memory, HBM&#xff09;——HBM4已成为全球存储芯片巨头三星、SK海力士和美光竞相追逐的技术高地。 随着AI、机器学习以及高性能…