算法设计与分析(实验5)-----图论—桥问题

一.实验目的

  1. 掌握图的连通性。
  2. 掌握并查集的基本原理和应用。

二.实验步骤与结果

1.定义

(1)图的相关定义

图:由顶点的有穷非空集合和顶点之间的边的集合组成。

连通图:在无向图G中,若对于任意两点x与y有路径,则称x与y连通,图G为连通图。

连通分量:非连通图的极大连通子图为连通分量。

(2)桥的定义

在图论中,一条边被称为“桥”代表这条边一旦被删除,这张图的连通块数量会增加。等价地说,一条边是一座桥当且仅当这条边不在任何环上。一张图可以有零或多座桥。

2.解决问题

        找出一个无向图中所有的桥。

要求:

(1)实现基准算法。

(2)设计的高效算法中必须使用并查集,如有需要,可以配合使用其他任何数据结构。

(3)用图2的例子验证算法正确性。

(4)使用文件 mediumG.txt和largeG.txt 中的无向图测试基准算法和高效算法的性能,记录两个算法的运行时间。

(5)设计的高效算法的运行时间作为评分标准之一。

(6)提交程序源代码。

(7)实验报告中要详细描述算法设计的思想,核心步骤,使用的数据结构。

3.实验过程

(1)基准算法

①算法原理:

For every edge (u, v), do following

a) Remove (u, v) from graph

b) See if the graph remains connected (We can either use BFS or DFS)

c) Add (u, v) back to the graph.

 

②算法伪代码:

void jizhun(int edge_i)//遍历所有的边

      n1=count();

      remove(edge_i);//删掉该边

      n2=count();

      add(edge_i);//补回刚才暂时删掉的边

      if(n1!=n2)

           return 1;//该边是桥

      return 0;//该边不是桥

③时间复杂度分析:

穷举删除的边需要e次,每次删除都要dfs判断连通分支数目,需要O(n+e),复杂度O(e)

对于稀疏图(e=n):复杂度为(n^2)

对于稠密图(e=n^2):复杂度为(n^4)

 ④小规模测试:

不同规模下算法运行效率和理论值对比

表1 稀疏图下算法效率O(n^2)

1000

2000

3000

4000

5000

实验值

0.0636

0.2768

0.6843

1.1585

1.6531

理论值

0.0636

0.2544

0.5724

1.0176

1.59

表2 稠密图下算法效率O(n^4)

100

150

200

250

300

实验值

0.6469

3.0139

8.8914

22.2807

45.062

理论值

0.6469

3.274931

10.3504

25.26953

52.3989

        实验结果表明,基准算法解决桥问题理论值和实验值在不同数据规模下几乎相同,基准算法解决稀疏图理论分析得出的O(n^2)的平均时间复杂度是相对准确的,基准算法解决稠密图理论分析得出的O(n^4)的平均时间复杂度是相对准确的。 

(2)基准法+并查集

①算法原理:

        与基准法思路相同,通过删除边并计算连通分支数目来查找桥,计算连通分支时使用并查集。并查集计算连通分支数目的步骤为:枚举边,对每个边上的两点v1和v2,查询v1和v2所属的集合f1,f2,如果v1和v2不在同一个集合则合并v1和v2所属的两个集合,最后统计集合的个数,即为连通分支数目。

②算法伪代码:

void bingchaji()

      for u in agj[v]:

             f1=find(v)

             f2=find(u)

             if f1 != f2:

                   father[f2]=f1

int find(x)

       if father[x]==x

             return x;

       father[x]=find(father[x])  //路径压缩

return father[x];

使用路径压缩策略,使得并查集的查询复杂度均摊下来为O(1)

③时间复杂度分析:(其中 n为顶点数,e为边数)

穷举删除的边需要e次,每次删除都用并查集判断连通分支数目,需要O(e),复杂度O(e)

对于稀疏图(e=n),复杂度为O(n2),对于稠密图(e=n2),复杂度为O(n4)

稀疏图

1000

2000

3000

4000

5000

实际值

0.0668

0.3459

0.6208

1.1796

1.8812

理论值

0.0668

0.2672

0.6201

1.0688

1.67

稠密图

100

150

200

250

300

实际值

1.119

4.9772

15.8986

38.1267

80.5864

理论值

1.119

5.664938

17.904

43.71094

90.639

        实验结果表明,基准+并查集算法解决桥问题理论值和实验值在不同数据规模下几乎相同,基准+并查集算法解决稀疏图理论分析得出的O(n^2)的平均时间复杂度是相对准确的,基准算法解决稠密图理论分析得出的O(n^4)的平均时间复杂度是相对准确的。 

④优化效果

稀疏图

1000

2000

3000

4000

5000

优化前

0.0636

0.2768

0.6843

1.1585

1.6531

优化后

0.0668

0.3459

0.6208

1.1796

1.8812

        分析得知,当数据规模较小时,算法的优化效果不明显,接下来在基准+并查集的算法基础上再设计优化算法。

(3)基准+并查集+生成树

引入最近公共祖先LCA

在一棵没有环的树上,除根节点外每个节点都有其父节点和祖先节点,最近公共祖先就是两个节点在这棵树上深度最大的公共祖先节点。寻找两个节点的最近公共节点即根据两个节点的深度分别向树根方向查找,当查找到第一个相同节点时,该节点即为两个节点的最近公共祖先。

排除所有不是桥的边,剩下的即为桥。可以通过判断一条边是否在环上,进行桥的判断。树是边数最小的无环图,并且当向树上添加任意一条顶点都在树上的边,必定会形成环。而桥必定不在环上,一定存在于图的生成树上,所以除了图的生成树上的边,其他的边一定不是桥。基于这一想法,可以先构建生成树,再枚举不在生成树上的所有边,并根据最近公共祖(LCA)排除加入这些边后生成的环所在的边,最后剩下的边即为桥。

 ②生成树:

因为桥边一定会出现在生成树上,所以对于基准法,我们只需要枚举生成树上的边,而不需要枚举所有的边,就能找到答案。生成树优化能够使得枚举边的代价从O(e)变为O(n)。

生成树的构建:使用 DFS 遍历,并在DFS 遍历时根据得到的生成树中边前驱与后继的关系为并查集设置好各个节点的父节点。

环的搜索与桥的标记:引入最近公共祖先来保证向上寻找祖先时每条边只被经过一次。将这些在环中的边标记为非桥。对边的标记可以通过对点数组的操作来实现节省空间。

路径压缩:对于层数较深的节点,需要多次递归才能找到最近公共祖先(LCA),并且,在递归过程中一直沿着完全一样的递归路径进行递归,造成了很多无用的向上递归。运用并查集对路径进行压缩,可以降低层数较深节点的最近公共祖先(LCA)递归时间。

③时间复杂度分析

(顶点个数为n,边个数为)

DFS构建生成树时间复杂度为O(n+e);为并查集设置父节点时间复杂度为O(n);一次查找最近公共祖先最差情况下要查找n次,时间复杂度O(n) ;一次路径压缩最差情况时间复杂度也为O(n);总共需要执行e-m次查找(m为生成树边数),因此算法的总时间复杂为:

 T=O(n+e)+O(n)+(e−m)×O(n)=O(en)

        查找的时间复杂度O(n)是最差情况,对于大数据量级下的查找操作,经过并查集的路径压缩,很快需要查找的节点基本上父节点大部分都已经被设置为最近公共祖先(LCA)。此时,查找的时间会接近O(1)。此时有:

即对大数据下算法的时间效率得到了极大提升。

伪代码

LCA(u, v)

if (father[u] == v || father[v] == u)

return

u1 = u, v1 = v;

while(true)

if depth[u]>depth[v]

tag[v]=0,v=father[v]

else

if u!=v

tag[u]=0,tag[v]=0

    u=father[u]

v=father[v]

else break

unzip(u1,u),unzip(v1,v)

Unzip(x, v)

if father[x] == v

return

else

tempx = x

x = father[x];

    father[temp] = v;

Upzip(x, v)

 ⑤时间效率分析

(5)大规模测试

        由于largeG数据集过大,在二维数组过大时使用DFS/BFS递归时可能会出现栈空间不足而无法处理数据从而得到可行解,故先对于IDE进行栈空间的扩充。

        采用优化算法对大规模测试数据进行求解:

 (6)其他优化算法

Tarjan算法是一个基于深度优先搜索(DFS)的图算法,用于寻找一个有向图中的强连通分量。

伪代码:

void Tarjan(G(E,V))

function Tarjan-SCC(v):

  v.index = index

  v.lowlink = index

  index = index + 1

  stack.push(v)

  

  for each edge (v, w) in E:

    if w.index is undefined:

      Tarjan-SCC(w)

      v.lowlink = min(v.lowlink, w.lowlink)

    else if w is in stack:

      v.lowlink = min(v.lowlink, w.index)

  

  if v.lowlink = v.index:

    SCC = []

    repeat

      w = stack.pop()

      SCC.add(w)

    until w = v

    SCCs.add(SCC)

for each vertex v in V:

  if v.index is undefined:

    Tarjan-SCC(v)

算法效率:

基准算法

基准+并查集+生成树

Tarjan

largeG测试运行时间

无解

2.987s

1.692s

通过测试得知,算法效率大大提升。

        除此之外,还可以加入编译优化:由于算法过程中使用了大量的STL容器,因此在编译时应该选择进行O3优化,大致可以将程序的运行时间缩短至原来的一半。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/524764.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

idea链接gitlab的token到期

报错 HTTP Request Request GET http://36.46.143.158:6060/api/v4/version failed wit

全坚固笔记本丨工业笔记本丨三防笔记本相较于普通笔记本有哪些优势?

三防笔记本和普通笔记本在设计和性能方面存在显著差异,三防笔记本相较于普通笔记本具备以下优势: 三防笔记本通常采用耐磨、耐摔的材料,并具有坚固的外壳设计,能够承受恶劣环境和意外碰撞,有效保护内部组件不受损坏。相…

Flutter第六弹 基础列表ListView

目标: 1)Flutter有哪些常用的列表组建 2)怎么定制列表项Item? 一、ListView简介 使用标准的 ListView 构造方法非常适合只有少量数据的列表。我们还将使用内置的 ListTile widget 来给我们的条目提供可视化结构。ListView支持…

10倍提效!用ChatGPT编写系统功能文档。。。

系统功能文档是一种描述软件系统功能和操作方式的文档。它让开发团队、测试人员、项目管理者、客户和最终用户对系统行为有清晰、全面的了解。 通过ChatGPT,我们能让编写系统功能文档的效率提升10倍以上。 ​《Leetcode算法刷题宝典》一位阿里P8大佬总结的刷题笔记…

Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks

原文链接:https://arxiv.org/abs/1908.10084 提出契机: 提升相似文本的检索速度 在自然语言处理领域,BERT(Bidirectional Encoder Representations from Transformers)和RoBERTa(A Robustly Optimized B…

mysql修改密码提示: Your password does not satisfy the current policy requirements

1、问题概述? 环境说明: Red Hat Enterprise Linux7mysql5.7.10 执行如下语句报错: set password for rootlocalhost password(123456); ERROR 1819 (HY000): Your password does not satisfy the current policy requirements意思就是&a…

深度学习之使用BP神经网络识别MNIST数据集

目录 补充知识点 torch.nn.LogSoftmax() torchvision.transforms transforms.Compose transforms.ToTensor transforms.Normalize(mean, std) torchvision.datasets MNIST(手写数字数据集) torch.utils.data.DataLoader torch.nn.NLLLoss() to…

Vue 有哪些主要的指令修饰符

目录 1. 什么是指令修饰符 2. 指令修饰符有哪些 2.1. 按键修饰符 2.2. v-model修饰符 2.3. 事件修饰符 1. 什么是指令修饰符 通过 "." 指明一些指令 后缀,不同 后缀 封装了不同的处理操作 目的:简化代码 2. 指令修饰符有哪些 2.1. 按键…

SpringMVC数据响应和请求

文章目录 1.SpringMVC简介2. SpringMVC快速入门3. SpringMVC执行的流程4.SpringMVC注解解释5. 视图解析器6.SpringMVC的数据响应6.1返回ModelView对象6.2直接返回字符串6.3返回json字符串 7.SpringMVC获得请求数据7.1 获得基本类型参数7.2获得POJO类型参数7.3获取数组类型参数7…

Python | Leetcode Python题解之第15题三数之和

题目: 题解: class Solution:def threeSum(self, nums: List[int]) -> List[List[int]]:n len(nums)nums.sort()ans list()# 枚举 afor first in range(n):# 需要和上一次枚举的数不相同if first > 0 and nums[first] nums[first - 1]:continu…

【问题处理】银河麒麟操作系统实例分享,银河麒麟高级服务器操作系统mellanox 网卡驱动编译

1.Mellanox 网卡源码驱动下载链接: https://www.mellanox.com/downloads/ofed/MLNX_EN-5.7-1.0.2.0/MLNX_EN_SRC-5.7-1.0.2.0.tgz 2.系统及内核版本如下截图: 3.未升级前 mellanox 网卡驱动版本如下: 4.解压 “MLNX_EN_SRC-5.7-1.0.2.0.tg…

uniapp使用npm命令引入font-awesome图标库最新版本

uniapp使用npm命令引入font-awesome图标库最新版本 图标库网址:https://fontawesome.com/search?qtools&or 命令行: 引入 npm i fortawesome/fontawesome-free 查看版本 npm list fortawesome在main.js文件中: import fortawesome/fo…

使用Springboot配置生产者、消费者RabbitMQ?

生产者服务 1、引入依赖以及配置rabbitmq 此时我们通过使用springboot来快速搭建一个生产者服务 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId> </dependency> applica…

网络安全流量平台_优缺点分析

FlowShadow&#xff08;流影&#xff09;&#xff0c;Ntm&#xff08;派网&#xff09;&#xff0c;Elastiflow。 Arkimesuricata&#xff0c;QNSMsuricata&#xff0c;Malcolm套件。 Malcolm套件优点&#xff1a;支持文件还原反病毒引擎&#xff08;clamav/yara&#xff09;…

webpack环境配置分类结合vue使用

文件目录结构 按照目录结构创建好文件 控制台执行: npm install /config/webpack.common.jsconst path require(path) const {merge} require(webpack-merge) const {CleanWebpackPlugin} require(clean-webpack-plugin) const { VueLoaderPlugin } require(vue-loader); c…

SQLite 4.9的虚拟表机制(十四)

返回&#xff1a;SQLite—系列文章目录 上一篇:SQLite 4.9的 OS 接口或“VFS”&#xff08;十三&#xff09; 下一篇&#xff1a;SQLite—系列文章目录 1. 引言 虚拟表是向打开的 SQLite 数据库连接注册的对象。从SQL语句的角度来看&#xff0c; 虚拟表对象与任何其他…

目标跟踪——行人检测数据集

一、重要性及意义 目标跟踪和行人检测是计算机视觉领域的两个重要任务&#xff0c;它们在许多实际应用中发挥着关键作用。为了推动这两个领域的进步&#xff0c;行人检测数据集扮演着至关重要的角色。以下是行人检测数据集的重要性及意义的详细分析&#xff1a; 行人检测数据…

MySQL操作DML

目录 1.概述 2.插入 3.更新 4.删除 5.查询 6.小结 1.概述 数据库DML是数据库操作语言&#xff08;Data Manipulation Language&#xff09;的简称&#xff0c;主要用于对数据库中的数据进行增加、修改、删除等操作。它是SQL语言的一部分&#xff0c;用于实现对数据库中数…

python统计分析——多组比较

参考资料&#xff1a;python统计分析【托马斯】 一、方差分析 1、原理 方差分析的思想是将方差分为组间方差和组内方差&#xff0c;看看这些分布是否符合零假设&#xff0c;即所有组都来自同一分布。区分不同群体的变量通常被称为因素或处理。 作为对比&#xff0c;t检验观察…

(React Hooks)前端八股文修炼Day9

一 对 React Hook 的理解&#xff0c;它的实现原理是什么 React Hooks是React 16.8版本中引入的一个特性&#xff0c;它允许你在不编写类组件的情况下&#xff0c;使用state以及其他的React特性。Hooks的出现主要是为了解决类组件的一些问题&#xff0c;如复杂组件难以理解、难…