探索实践昏暗光线低光照场景下目标检测,基于YOLOv7【tiny/l/x】模型开发构建昏暗光线低光照场景下的目标检测识别系统

昏暗光线低光照条件下的目标检测问题,是机器视觉领域一个长期存在且持续受到关注的挑战。这个问题的背景主要源自现代社会对机器视觉技术的广泛需求,特别是在光线条件不佳的环境下,如夜间监控、自动驾驶、安防系统等场景。在昏暗光线或低光照条件下,图像数据的采集和处理变得尤为困难。由于光线不足,图像中的目标往往难以清晰地显示出来,导致目标的边缘模糊、颜色信息丢失等问题。这不仅影响了图像的视觉效果,也给目标检测任务带来了极大的挑战。目标检测作为计算机视觉领域的基本任务,是实例分割、目标跟踪等其他视觉任务的重要基础。在昏暗光线低光照条件下,目标检测的准确性会受到严重影响,可能导致漏检、误检等问题,从而影响整个视觉系统的性能。因此,研究昏暗光线低光照条件下的目标检测问题,对于提高机器视觉系统的性能和稳定性具有重要意义。这不仅可以推动计算机视觉技术的发展,还可以为实际应用提供更好的技术支持,如提高夜间监控的可靠性、增强自动驾驶系统的安全性等。

在前文中我们已经有过一些开发实践感兴趣的话可以自行移步阅读即可:

《探索实践低光照场景下YOLOv5s模型上限,融合CBAM注意力机制开发构建基于改进YOLOv5s的低光照条件下目标检测识别分析系统》

《探索实践昏暗光线低光照场景下目标检测,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建昏暗光线低光照场景下的目标检测识别系统》

本文的主要目的是想要基于YOLOv7来开发实践昏暗光线低光照场景下的目标检测模型,探索YOLOv7不同参数模型的性能表现情况,首先看下实例效果:

简单看下数据集,数据集来源于网络源:

可以看到:整体数据的光线光照条件都是很一般的。

标注文件如下所示:

实例标注内容如下:

4 0.344675 0.89645 0.204142 0.100592
11 0.702663 0.885602 0.156805 0.094675
7 0.840237 0.894477 0.189349 0.100592
6 0.230769 0.822485 0.053254 0.031558
8 0.482249 0.861933 0.100592 0.051282
0 0.428994 0.844181 0.065089 0.043393

YOLOv7是 YOLO 系列最新推出的YOLO 结构,在 5 帧/秒到 160 帧/秒范围内,其速度和精度都超过了大部分已知的目标检测器,在 GPU V100 已知的 30 帧/秒以上的实时目标检测器中,YOLOv7 的准确率最高。根据代码运行环境的不同(边缘 GPU、普通 GPU 和云 GPU),YOLOv7 设置了三种基本模型,分别称为 YOLOv7-tiny、YOLOv7和 YOLOv7-W6。相比于 YOLO 系列其他网络 模 型 ,YOLOv7 的 检 测 思 路 与YOLOv4、YOLOv5相似,YOLOv7 网络主要包含了 Input(输入)、Backbone(骨干网络)、Neck(颈部)、Head(头部)这四个部分。首先,图片经过输入部分数据增强等一系列操作进行预处理后,被送入主干网,主干网部分对处理后的图片提取特征;随后,提取到的特征经过 Neck 模块特征融合处理得到大、中、小三种尺寸的特征;最终,融合后的特征被送入检测头,经过检测之后输出得到结果。
YOLOv7 网络模型的主干网部分主要由卷积、E-ELAN 模块、MPConv 模块以及SPPCSPC 模块构建而成 。在 Neck 模块,YOLOv7 与 YOLOv5 网络相同,也采用了传统的 PAFPN 结构。FPN是YoloV7的加强特征提取网络,在主干部分获得的三个有效特征层会在这一部分进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,已经获得的有效特征层被用于继续提取特征。在YoloV7里依然使用到了Panet的结构,我们不仅会对特征进行上采样实现特征融合,还会对特征再次进行下采样实现特征融合。Head检测头部分,YOLOv7 选用了表示大、中、小三种目标尺寸的 IDetect 检测头,RepConv模块在训练和推理时结构具有一定的区别。

训练数据配置文件如下所示:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test



# number of classes
nc: 12


# class names
names: ['Bicycle','Boat','Bottle','Bus','Car','Cat','Chair','Cup','Dog','Motorbike','People','Table']

这里主要是选择了yolov7-tiny、yolov7和yolov7x这三款不同参数量级的模型来进行开发训练,最终线上选取的是yolov7系列的模型作为推理模型,这里给出来yolov7的模型文件:

# parameters
nc: 12  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
 
# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32
 
# yolov7 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 3, 1]],  # 0
  
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2      
   [-1, 1, Conv, [64, 3, 1]],
   
   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4  
   [-1, 1, Conv, [64, 1, 1]],
   [-2, 1, Conv, [64, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],  # 11
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 16-P3/8  
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]],  # 24
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 29-P4/16  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 37
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [512, 1, 1]],
   [-3, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 42-P5/32  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 50
  ]
 
# yolov7 head
head:
  [[-1, 1, SPPCSPC, [512]], # 51
  
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [37, 1, Conv, [256, 1, 1]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 63
   
   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [24, 1, Conv, [128, 1, 1]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1]], # 75
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3, 63], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 88
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3, 51], 1, Concat, [1]],
   
   [-1, 1, Conv, [512, 1, 1]],
   [-2, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]], # 101
   
   [75, 1, RepConv, [256, 3, 1]],
   [88, 1, RepConv, [512, 3, 1]],
   [101, 1, RepConv, [1024, 3, 1]],
 
   [[102,103,104], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

如果对YOLOv7开发构建自己的个性化目标检测系统有疑问的可以参考前文的超详细教程:
《YOLOv7基于自己的数据集从零构建模型完整训练、推理计算超详细教程》

在实验阶段保持完全相同的参数设置,等待全部训练完成之后来从多个指标的维度来进行综合的对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss走势】

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

综合实验对比分析结果来看:tiny系列的模型效果最差,而l和x系列的模型则达到了相近的水准,这里考虑参数量的话最终选择使用l系列的模型来作为最终的推理模型。

接下来我们详细看下yolov7模型的结果详情。

【离线推理实例】

【Batch实例】

【PR曲线】

【Precision曲线】

【Recall曲线】

【训练可视化】

【混淆矩阵】

感兴趣的话都可以自行动手尝试下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/524338.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

849. Dijkstra求最短路 I

tips: 采用0x3f3f3f3f作为一个极大值: 1061109567 //是一个很大的数,可以用来代表∞; 在memset里0x3f表示为0x3f3f3f3f memset(a, 0x3f, sizeof a); //0x是十六进制的意思; memset()是对char操作,即一个…

海外媒体宣发套餐推广8个要点解析为标题-华媒舍

在当前全球化的时代背景下,海外市场的开拓对于企业的发展至关重要。而海外媒体宣传是一种有效的推广方式,可以帮助企业在全球范围内打开市场。本文将对8个海外媒体宣发套餐的推广要点进行解析,帮助企业了解如何在海外市场进行宣传推广。 1. 媒…

js,uniapp,vue,小写数字转化为大写

应用场景: 把1、2、3,转为一、二、三 方法: retBigSrt(num) {const changeNum [零, 一, 二, 三, 四, 五, 六, 七, 八, 九]const unit [, 十, 百]num parseInt(num)const getWan (temp) > {const strArr temp.toString().split().re…

论文阅读《Semantic Prompt for Few-Shot Image Recognition》

论文地址:https://arxiv.org/pdf/2303.14123.pdf 论文代码:https://github.com/WentaoChen0813/SemanticPrompt 目录 1、存在的问题2、算法简介3、算法细节3.1、预训练阶段3.2、微调阶段3.3、空间交互机制3.4、通道交互机制 4、实验4.1、对比实验4.2、组…

软件杯 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv

文章目录 0 前言1 课题背景2 实现效果3 DeepSORT车辆跟踪3.1 Deep SORT多目标跟踪算法3.2 算法流程 4 YOLOV5算法4.1 网络架构图4.2 输入端4.3 基准网络4.4 Neck网络4.5 Head输出层 5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 *…

QT C++(QT对象树与内存泄漏管理,QT中文乱码问题)

文章目录 1. QT对象树与内存泄漏2. QT中文乱码 1. QT对象树与内存泄漏 #include "widget.h" #include "ui_widget.h" #include <QLabel>Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);//通过代码构…

SpringCloud Alibaba Sentinel 实现熔断功能

一、前言 接下来是开展一系列的 SpringCloud 的学习之旅&#xff0c;从传统的模块之间调用&#xff0c;一步步的升级为 SpringCloud 模块之间的调用&#xff0c;此篇文章为第十六篇&#xff0c;即使用 Sentinel 实现熔断功能。 二、 Ribbon 系列 首先我们新建两个服务的提供者…

90天玩转Python—05—基础知识篇:Python基础知识扫盲,使用方法与注意事项

90天玩转Python系列文章目录 90天玩转Python—01—基础知识篇:C站最全Python标准库总结 90天玩转Python--02--基础知识篇:初识Python与PyCharm 90天玩转Python—03—基础知识篇:Python和PyCharm(语言特点、学习方法、工具安装) 90天玩转Python—04—基础知识篇:Pytho…

神经网络中的超参数调整

背景 在深度神经网络学习和优化中&#xff0c;超参数调整一项必备技能&#xff0c;通过观察在训练过程中的监测指标如损失loss和准确率来判断当前模型处于什么样的训练状态&#xff0c;及时调整超参数以更科学地训练模型能够提高资源利用率。在本研究中使用了以下超参数&#x…

cocos creator 安卓包 输入法遮挡问题

问题描述 Cocos Creator开发版本&#xff1a; v2.4.x 如上效果图。该需求是&#xff0c;进入游戏后&#xff0c;随机角色名&#xff0c;可以自己编辑。在未修改前 手机输入法遮挡了游戏的编辑框&#xff0c;导致无法直观展示&#xff0c;编辑的文字。尝试各种修改清单文件wind…

2024春算法训练4——函数与递归题解

一、前言 感觉这次的题目都很好&#xff0c;但是E题....&#xff08;我太菜了想不到&#xff09;&#xff0c;别人的题解都上百行了&#xff0c;晕&#xff1b; 二、题解 A-[NOIP2010]数字统计_2024春算法训练4——函数与递归 (nowcoder.com) 这种题目有两种做法&#xff1a;…

Golang单元测试和压力测试

一.单元测试 1.1 go test工具 go语言中的测试依赖go test命令。编写测试代码和编写普通的Go代码过程类似&#xff0c;并不需要学习新的语法&#xff0c;规则和工具。 go test命令是一个按照一定约定和组织的测试代码的驱动程序。在包目录内&#xff0c;所有以_test.go为后缀名的…

自定义gitlog格式

git log命令非常强大而好用&#xff0c;在复杂系统的版本管理中扮演着重要的角色&#xff0c;但默认的git log命令显示出的东西实在太丑&#xff0c;不好好打扮一下根本没法见人&#xff0c;打扮好了用alias命令拍个照片&#xff0c;就正式出道了&#xff01; 在使用git查看lo…

物联网可视化平台

随着数字化转型的深入&#xff0c;物联网技术正在成为企业实现智能化、高效化运营的重要工具。物联网可视化平台&#xff0c;作为连接物理世界与数字世界的桥梁&#xff0c;为企业提供了直观、实时的数据展示和监控能力&#xff0c;从而在数字化转型中扮演着关键角色。 一、物…

链路代价信息、链路状态信息(链路状态通告LSA)

链路代价信息"link cost information" 通常指的是**在网络中&#xff0c;数据包从一个节点传输到另一个节点所需承担的“成本”或者“开销”&#xff0c;这个概念常用于路由算法和网络设计中**。以下是一些关键要点&#xff1a; 1. **路径开销**&#xff1a;路径开…

【iOS】UITableView性能优化

文章目录 前言一、优化的本质二、卡顿产生原因三、CPU层面优化1.使用轻量级对象2.cellForRowAtIndexPath方法中不要做耗时操作3.UITableView的复用机制4.提前计算好布局了解tableView代理方法执行顺序cell高度计算rowHeightestimatedRowHeight 高度计算进行时机rowHeight计算时…

如何采集大众点评的商家信息-简数采集器

如何使用简数采集器批量采集大众点评的店铺和活动等相关信息呢&#xff1f; 简数采集器目前不支持采集大众点评的店家和活动等信息&#xff0c;不建议采集&#xff0c;请换个采集源采集。 简数采集器采集网站文章特别简单&#xff0c;不需要懂编程写代码&#xff0c;只需填写…

基于Spring Boot的网上书城系统(带文档)

主要功能 本次设计任务是要设计一个网上书城管理系统&#xff0c;通过这个系统能够满足网上书城的管理及用户的图书信息管理及购物功能。系统的主要功能包括&#xff1a;首页、个人中心、用户管理、图书类型管理、图书分类管理、图书信息管理、我的收藏管理、系统管理、订单管…

2.接口自动化测试学习-执行excel测试用例

1.接口自动化测试规划 编程语言 编程工具 自动化测试框架&#xff1a;pytest 报告可视化&#xff1a;allure 持续方案&#xff1a;CI持续集成-jenkins 仓库服务器&#xff08;自动化执行&#xff09;&#xff1a;github/gitlab/gitee 测试管理工具&#xff1a;jira 2.项目代码…

三防笔记本丨工业笔记本电脑丨助力测绘行业的数字化转型

测绘行业测绘行业一直是高度技术化的领域&#xff0c;其重要性在于为建设、规划和资源管理提供准确的地理数据。然而&#xff0c;随着技术的发展&#xff0c;传统的测绘方法已经难以满足对数据精度和实时性的要求。因此&#xff0c;测绘行业正逐渐向数字化转型&#xff0c;采用…