LeetCode-51. N 皇后【数组 回溯】
- 题目描述:
- 解题思路一:回溯, 回溯三部曲。验证是否合法只需要检查:1.正上方;2. 左上方;3.右上方。因为是从上到下,从左到右遍历的,下方不可能有皇后。
- 解题思路二:0
- 解题思路三:0
题目描述:
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
示例 1:
输入:n = 4
输出:[[“.Q…”,“…Q”,“Q…”,“…Q.”],[“…Q.”,“Q…”,“…Q”,“.Q…”]]
解释:如上图所示,4 皇后问题存在两个不同的解法。
示例 2:
输入:n = 1
输出:[[“Q”]]
提示:
1 <= n <= 9
解题思路一:回溯, 回溯三部曲。验证是否合法只需要检查:1.正上方;2. 左上方;3.右上方。因为是从上到下,从左到右遍历的,下方不可能有皇后。
从图中,可以看出,二维矩阵中矩阵的高就是这棵树的高度,矩阵的宽就是树形结构中每一个节点的宽度。
那么我们用皇后们的约束条件,来回溯搜索这棵树,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了。
- 递归函数参数
我依然是定义全局变量二维数组result来记录最终结果。
参数n是棋盘的大小,然后用row来记录当前遍历到棋盘的第几层了。
-
递归终止条件
在如下树形结构中:
可以看出,当递归到棋盘最底层(也就是叶子节点)的时候,就可以收集结果并返回了。 -
单层搜索的逻辑
递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置。
每次都是要从新的一行的起始位置开始搜,所以都是从0开始。
- 验证棋盘是否合法
按照如下标准去重:
不能同行
不能同列
不能同斜线 (45度和135度角)
class Solution:
def solveNQueens(self, n: int) -> List[List[str]]:
res = []
chessboard = ['.' * n for _ in range(n)]
self.backtracking(chessboard, n, 0, res)
return [[''.join(row) for row in solution] for solution in res]
def backtracking(self, chessboard, n, row, res):
if row == n:
res.append(chessboard[:])
return
for col in range(n):
if self.isValid(row, col, chessboard):
chessboard[row] = chessboard[row][:col] + 'Q' + chessboard[row][col+1:]
self.backtracking(chessboard, n, row + 1, res)
chessboard[row] = chessboard[row][:col] + '.' + chessboard[row][col+1:]
def isValid(self, row, col, chessboard):
for i in range(row):
if chessboard[i][col] == 'Q':
return False
i, j = row - 1, col - 1
while i >= 0 and j >= 0:
if chessboard[i][j] == 'Q':
return False
i -= 1
j -= 1
i, j = row - 1, col + 1
while i >= 0 and j < len(chessboard):
if chessboard[i][j] == 'Q':
return False
i -= 1
j += 1
return True
时间复杂度:O(n!)
空间复杂度:O(n)
解题思路二:0
时间复杂度:O(n)
空间复杂度:O(n)
解题思路三:0
时间复杂度:O(n)
空间复杂度:O(n)