目录
1、lambda表达式
C++98中的一个例子
lambda表达式的
lambda表达式语法
函数对象与lambda表达式
3、可变参数模板
递归获取
逗号表达式展开参数包
2、包装器
function包装器
bind
1、lambda表达式
C++98中的一个例子
在C++98中,如果想要对一个数据集合中的元素进行排序,可以使用std::sort方法。
#include <algorithm> #include <functional> int main() { int array[] = {4, 1, 8, 5, 3, 7, 0, 9, 2, 6}; // 默认按照小于比较,排出来结果是升序 std::sort(array, array + sizeof(array) / sizeof(array[0])); // 如果需要降序,需要改变元素的比较规则 std::sort(array, array + sizeof(array) / sizeof(array[0]), greater<int>()); return 0; }
如果待排序元素为自定义类型,需要用户定义排序时的比较规则:
struct Goods { string _name; // 名字 double _price; // 价格 int _evaluate; // 评价 Goods(const char* str, double price, int evaluate) : _name(str), _price(price), _evaluate(evaluate) {} }; struct ComparePriceLess { bool operator()(const Goods& gl, const Goods& gr) { return gl._price < gr._price; } }; struct ComparePriceGreater { bool operator()(const Goods& gl, const Goods& gr) { return gl._price > gr._price; } }; int main() { vector<Goods> v = { {"苹果", 2.1, 5}, {"香蕉", 3, 4}, {"橙子", 2.2, 3}, {"菠萝", 1.5, 4}}; sort(v.begin(), v.end(), ComparePriceLess()); sort(v.begin(), v.end(), ComparePriceGreater()); }
随着C++语法的发展,人们开始觉得上面的写法太复杂了,每次为了实现一个algorithm算法,
都要重新去写一个类,如果每次比较的逻辑不一样,还要去实现多个类,特别是相同类的命名,
这些都给编程者带来了极大的不便。因此,在C++11语法中出现了Lambda表达式。
lambda表达式的
int main() { vector<Goods> v = { {"苹果", 2.1, 5}, {"香蕉", 3, 4}, {"橙子", 2.2, 3}, {"菠萝", 1.5, 4}}; sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) { return g1._price < g2._price; }); sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) { return g1._price > g2._price; }); sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) { return g1._evaluate < g2._evaluate; }); sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) { return g1._evaluate > g2._evaluate; }); }
可以看出lambuda表达式本质就是一个匿名函数。多用来替代仿函数生成的匿名对象。
lambda表达式语法
lambda表达式书写格式:[capture-list] (parameters) mutable -> return-type { statement}
1. lambda表达式各部分说明
- [capture-list] : 捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据[]来
判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda
函数使用。
- (parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以
连同()一起省略
- mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量
性。使用该修饰符时,参数列表不可省略(即使参数为空)。
- ->returntype:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回
值时此部分可省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推导。
- {statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获
到的变量。
注意:
在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为空。因此C++11中最简单的lambda函数为:[]{}; 该lambda函数不能做任何事情int main() { // 最简单的lambda表达式, 该lambda表达式没有任何意义 [] {}; // 省略参数列表和返回值类型,返回值类型由编译器推导为int int a = 3, b = 4; [=] { return a + 3; }; // 省略了返回值类型,无返回值类型 auto fun1 = [&](int c) { b = a + c; }; fun1(10) cout << a << " " << b << endl; // 各部分都很完善的lambda函数 auto fun2 = [=, &b](int c) -> int { return b += a + c; }; cout << fun2(10) << endl; // 复制捕捉x int x = 10; auto add_x = [x](int a) mutable { x *= 2; return a + x; }; cout << add_x(10) << endl; return 0; }
通过上述例子可以看出,lambda表达式实际上可以理解为无名函数,该函数无法直接调
用,如果想要直接调用,可借助auto将其赋值给一个变量。通过上述例子可以看出,lambda表达式实际上可以理解为无名函数,该函数无法直接调
用,如果想要直接调用,可借助auto将其赋值给一个变量。
2. 捕获列表说明
- 捕捉列表描述了上下文中那些数据可以被lambda使用,以及使用的方式传值还是传引用。[var]:表示值传递方式捕捉变量var
- [=]:表示值传递方式捕获所有父作用域中的变量(包括this)
- [&var]:表示引用传递捕捉变量var
- [&]:表示引用传递捕捉所有父作用域中的变量(包括this)
- [this]:表示值传递方式捕捉当前的this指针
注意:
a.父作用域指包含lambda函数的语句块
b. 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。
比如:[=, &a, &b]:以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量
[&,a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量
c. 捕捉列表不允许变量重复传递,否则就会导致编译错误。
比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复d. 在块作用域以外的lambda函数捕捉列表必须为空。
e. 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者
非局部变量都
会导致编译报错。
f. lambda表达式之间不能相互赋值,即使看起来类型相同void (*PF)(); int main() { auto f1 = [] { cout << "hello world" << endl; }; auto f2 = [] { cout << "hello world" << endl; }; // 此处先不解释原因,等lambda表达式底层实现原理看完后,大家就清楚了 // f1 = f2; // 编译失败--->提示找不到operator=() // 允许使用一个lambda表达式拷贝构造一个新的副本 auto f3(f2); f3(); // 可以将lambda表达式赋值给相同类型的函数指针 PF = f2; PF(); return 0 }
函数对象与lambda表达式
函数对象,又称为仿函数,即可以想函数一样使用的对象,就是在类中重载了operator()运算符的
类对象。class Rate { public: Rate(double rate) : _rate(rate) {} double operator()(double money, int year) { return money * _rate * year; } private: double _rate; }; int main() { // 函数对象 double rate = 0.49; Rate r1(rate); r1(10000, 2); // lamber auto r2 = [=](double monty, int year) -> double { return monty * rate * year; }; r2(10000, 2); return 0; }
实际在底层编译器对于lambda表达式的处理方式,完全就是按照函数对象的方式处理的,即:如
果定义了一个lambda表达式,编译器会自动生成一个类,在该类中重载了operator()。
实际在底层编译器对于lambda表达式的处理方式,完全就是按照函数对象的方式处理的,即:如
果定义了一个lambda表达式,编译器会自动生成一个类,在该类中重载了operator()。
3、可变参数模板
C++11的新特性可变参数模板能够让您创建可以接受可变参数的函数模板和类模板,相比 C++98/03,类模版和函数模版中只能含固定数量的模版参数,可变模版参数无疑是一个巨大的改 进。
然而由于可变模版参数比较抽象,使用起来需要一定的技巧,所以这块还是比较晦涩的。现 阶段呢,我们掌握一些基础的可变参数模板特性就够我们用了,所以这里我们点到为止,以后大 家如果有需要,再可以深入学习。
下面就是一个基本可变参数的函数模板:
// Args是一个模板参数包,args是一个函数形参参数包
// 声明一个参数包Args...args,这个参数包中可以包含0到任意个模板参数。
template <class ...Args>
void ShowList(Args... args)
{}
上面的参数args前面有省略号,所以它就是一个可变模版参数,我们把带省略号的参数称为“参数 包”,它里面包含了0到N(N>=0)个模版参数。
我们无法直接获取参数包args中的每个参数的, 只能通过展开参数包的方式来获取参数包中的每个参数,这是使用可变模版参数的一个主要特 点,也是最大的难点,即如何展开可变模版参数。由于语法不支持使用args[i]这样方式获取可变 参数,所以我们的用一些奇招来一一获取参数包的值。
递归获取
// decltype的一些使用使用场景
#include<iostream>
using namespace std;
template<class T>
void showlist(const T& t) {
cout << t << endl;
}
template<class T, class ...brgs>
void showlist(T value, brgs...args) {
cout << value << endl;
showlist(args...);
}
int main() {
showlist(1);
showlist(1,'A');
showlist(1,'b',std::string("fdcacd"));
return 0;
}
逗号表达式展开参数包
这种展开参数包的方式,不需要通过递归终止函数,是直接在expand函数体中展开的, printarg 不是一个递归终止函数,只是一个处理参数包中每一个参数的函数。这种就地展开参数包的方式 实现的关键是逗号表达式。我们知道逗号表达式会按顺序执行逗号前面的表达式。
expand函数中的逗号表达式:(printarg(args), 0),也是按照这个执行顺序,先执行 printarg(args),再得到逗号表达式的结果0。同时还用到了C++11的另外一个特性——初始化列 表,通过初始化列表来初始化一个变长数组, {(printarg(args), 0)...}将会展开成((printarg(arg1),0), (printarg(arg2),0), (printarg(arg3),0), etc... ),最终会创建一个元素值都为0的数组int arr[sizeof...(Args)]。
由于是逗号表达式,在创建数组的过程中会先执行逗号表达式前面的部分printarg(args) 打印出参数,也就是说在构造int数组的过程中就将参数包展开了,这个数组的目的纯粹是为了在 数组构造的过程展开参数包
template <class T> void PrintArg(T t) { cout << t << " "; }
// 展开函数
template <class... Args> void ShowList(Args... args) {
int arr[] = {(PrintArg(args), 0)...};
cout << endl;
}
int main() {
ShowList(1);
ShowList(1, 'A');
ShowList(1, 'A', std::string("sort"));
return 0;
}
首先我们看到的emplace系列的接口,支持模板的可变参数,并且万能引用。那么相对insert和 emplace系列接口的优势到底在哪里呢?
#include<iostream>
#include<list>
using namespace std;
int main()
{
std::list< std::pair<int, char> > mylist;
// emplace_back支持可变参数,拿到构建pair对象的参数后自己去创建对象(直接构造)
// 那么在这里我们可以看到除了用法上,和push_back没什么太大的区别
mylist.emplace_back(10, 'a');
mylist.emplace_back(20, 'b');
mylist.emplace_back(make_pair(30, 'c'));
mylist.push_back(make_pair(40, 'd'));
mylist.push_back({ 50, 'e' });//这个是调用piar支持initiallize_list类型的构造函数
for (auto e : mylist)
cout << e.first << ":" << e.second << endl;
return 0;
}
int main()
{
// 下面我们试一下带有拷贝构造和移动构造的bit::string,再试试呢
// 我们会发现其实差别也不到,emplace_back是直接构造了,push_back
// 是先构造,再移动构造,其实也还好。
std::list< std::pair<int, bit::string> > mylist;
mylist.emplace_back(10, "sort");
mylist.emplace_back(make_pair(20, "sort"));
mylist.push_back(make_pair(30, "sort"));
mylist.push_back({ 40, "sort"});
return 0;
}
从使用方式上来看,函数对象与lambda表达式完全一样。
函数对象将rate作为其成员变量,在定义对象时给出初始值即可,lambda表达式通过捕获列表可
以直接将该变量捕获到。
2、包装器
function包装器
function包装器 也叫作适配器。C++中的function本质是一个类模板,也是一个包装器。
那么我们来看看,我们为什么需要function呢?
ret = func(x);
// 上面func可能是什么呢?那么func可能是函数名?函数指针?函数对象(仿函数对象)?也有可能
是lamber表达式对象?所以这些都是可调用的类型!如此丰富的类型,可能会导致模板的效率低下!
为什么呢?我们继续往下看 template <class F, class T>
T useF(F f, T x) {
static int count = 0;
cout << "count:" << ++count << endl;
cout << "count:" << &count << endl;
return f(x);
}
double f(double i) { return i / 2; }
struct Functor {
double operator()(double d) { return d / 3; }
};
int main() {
// 函数名
cout << useF(f, 11.11) << endl;
// 函数对象
cout << useF(Functor(), 11.11) << endl;
// lamber表达式
cout << useF([](double d) -> double { return d / 4; }, 11.11) << endl;
return 0;
}
通过上面的程序验证,我们会发现useF函数模板实例化了三份。static 变量打印了三份
包装器可以很好的解决上面的问题
std::function在头文件<functional>
// 类模板原型如下
template <class T> function; // undefined
template <class Ret, class... Args>
class function<Ret(Args...)>;
模板参数说明:
Ret: 被调用函数的返回类型
Args…:被调用函数的形参
// 使用方法如下:
#include <functional>
int f(int a, int b) { return a + b; }
struct Functor {
public:
int operator()(int a, int b) { return a + b; }
};
class Plus {
public:
static int plusi(int a, int b) { return a + b; }
double plusd(double a, double b) { return a + b; }
};
int main() {
// 函数名(函数指针)
std::function<int(int, int)> func1 = f;
cout << func1(1, 2) << endl;
// 函数对象
std::function<int(int, int)> func2 = Functor();
cout << func2(1, 2) << endl;
// lamber表达式
std::function<int(int, int)> func3 = [](const int a, const int b) {
return a + b;
};
cout << func3(1, 2) << endl;
// 类的成员函数
std::function<int(int, int)> func4 = &Plus::plusi;
cout << func4(1, 2) << endl;
std::function<double(Plus, double, double)> func5 = &Plus::plusd;
cout << func5(Plus(), 1.1, 2.2) << endl;
return 0;
}
有了包装器,如何解决模板的效率低下,实例化多份的问题呢?
include<functional> template <class F, class T> T useF(F f, T x) {
static int count = 0;
cout << "count:" << ++count << endl;
cout << "count:" << &count << endl;
return f(x);
}
double f(double i) { return i / 2; }
struct Functor {
double operator()(double d) { return d / 3; }
};
int main() {
包装器的其他一些场景:
https: // leetcode-cn.com/problems/evaluate-reverse-polish-notation/submissions/
// 函数名
std::function<double(double)> func1 = f;
cout << useF(func1, 11.11) << endl;
// 函数对象
std::function<double(double)> func2 = Functor();
cout << useF(func2, 11.11) << endl;
// lamber表达式
std::function<double(double)> func3 = [](double d) -> double {
return d / 4;
};
cout << useF(func3, 11.11) << endl;
return 0;
}
包装器的其他一些场景:
. - 力扣(LeetCode)
class Solution {
public:
int evalRPN(vector<string>& tokens) {
stack<int> st;
map<string, function<int(int, int)>> opFuncMap = {
{"+", [](int i, int j) { return i + j; }},
{"-", [](int i, int j) { return i - j; }},
{"*", [](int i, int j) { return i * j; }},
{"/", [](int i, int j) { return i / j; }}};
for (auto& str : tokens) {
if (opFuncMap.find(str) != opFuncMap.end()) {//从前向后遍历,未找到则返回end
int right = st.top();
st.pop();
int left = st.top();
st.pop();
st.push(opFuncMap[str](left, right));
} else {
// 1、atoi itoa
// 2、sprintf scanf
// 3、stoi to_string C++11
st.push(stoi(str));
}
}
return st.top();
}
};
bind
std::bind函数定义在头文件中,是一个函数模板,它就像一个函数包装器(适配器),接受一个可调用对象(callable object),生成一个新的可调用对象来“适应”原对象的参数列表。一般而
言,我们用它可以把一个原本接收N个参数的函数fn,通过绑定一些参数,返回一个接收M个(M
可以大于N,但这么做没什么意义)参数的新函数。同时,使用std::bind函数还可以实现参数顺序调整等操作。
// 原型如下:
template <class Fn, class... Args>
/* unspecified */ bind (Fn&& fn, Args&&... args);
// with return type (2)
template <class Ret, class Fn, class... Args>
/* unspecified */ bind (Fn&& fn, Args&&... args);
可以将bind函数看作是一个通用的函数适配器,它接受一个可调用对象,生成一个新的可调用对象来“适应”原对象的参数列表。
调用bind的一般形式:auto newCallable = bind(callable,arg_list);
其中,newCallable本身是一个可调用对象,arg_list是一个逗号分隔的参数列表,对应给定的
callable的参数。当我们调用newCallable时,newCallable会调用callable,并传给它arg_list中
的参数。
arg_list中的参数可能包含形如_n的名字,其中n是一个整数,这些参数是“占位符”,表示
newCallable的参数,它们占据了传递给newCallable的参数的“位置”。数值n表示生成的可调用对
象中参数的位置:_1为newCallable的第一个参数,_2为第二个参数,以此类推.
// 使用举例
#include <functional>
int Plus(int a, int b) { return a + b; }
class Sub {
public:
int sub(int a, int b) { return a - b; }
};
int main() {
// 表示绑定函数plus 参数分别由调用 func1 的第一,二个参数指定
std::function<int(int, int)> func1 =
std::bind(Plus, placeholders::_1, placeholders::_2);
// auto func1 = std::bind(Plus, placeholders::_1, placeholders::_2);
// func2的类型为 function<void(int, int, int)> 与func1类型一样
// 表示绑定函数 plus 的第一,二为: 1, 2
auto func2 = std::bind(Plus, 1, 2);
cout << func1(1, 2) << endl;
cout << func2() << endl;
Sub s;
// 绑定成员函数
std::function<int(int, int)> func3 =
std::bind(&Sub::sub, s, placeholders::_1, placeholders::_2);
std::function<int(int, int)> func4 =
std::bind(&Sub::sub, s, placeholders::_2, placeholders::_1);
cout << func3(1, 2) << endl;
cout << func4(1, 2) << endl;
return 0;
}