【目标检测论文解读复现NO.33】改进YOLOv5的新能源电池集流盘缺陷检测方法

前言
此前出了目标改进算法专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读最新目标检测算法论文,帮助大家解答疑惑。解读的系列文章,本人已进行创新点代码复现,有需要的朋友可关注私信我。本文仅对论文代码实现,如果原文章的作者觉得不方便,请联系删除,尊重每一位论文作者。 

一、摘要

针对新能源汽车电池集流盘中因目标缺陷分布杂乱、尺寸跨度大和特征模糊而易出现误检、漏检的问题,提出一种基于多尺度可变形卷积的YOLOv5方法(YOLOv5s-4Scale-DCN),以用于汽车电池集流盘缺陷检测。首先,针对不同尺度的缺陷目标,在YOLOv5模型的基础上新增检测层,通过捕获不同尺度缺陷的特征以及融合不同深度的语义特征,提高对不同尺度缺陷目标的检测率;其次,引入可变形卷积,扩大特征图的感受野,使提取的特征辨析力更强,有效地提高了模型的缺陷识别能力。实验结果表明,所提的YOLOv5s-4Scale-DCN算法可以有效检测新能源汽车电池集流盘缺陷,m AP达到了91%,相较原算法提高了2.5%,FPS达到了113.6,重度不良和无盖缺陷这两种类别的缺陷,检测召回率达到了100%,满足新能源汽车电池集流盘缺陷实时检测要求。

二、网络模型及核心创新点

1.新增检测层

2.引入可形变卷积


```
第二步:定义yaml网络结构文件。
```python
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 4  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, DCNConv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

```

三、应用数据集(模型构建过程)

本文实验所用的数据集为自行构建,使用从生产线上收集的真实磷酸铁锂汽车电池集流盘缺陷数据,由高分辨率巴斯勒工业相机在光线良好的室内环境下进行拍摄采集。原始图像分辨率为2448×2048,在预处理阶段通过Python以电极孔为中心对原始图像进行裁剪,去除无关背景,保留有用信息,截取之后的图像分辨率为1250×1200。使用Lableme数据标注工具对图片进行标注,标注后自动生成JSON格式的文件,文件名与图片名始终保持一致。

图8为良品图像和常见的5种新能源汽车电池集流盘缺陷类型:焊穿(Weld through)、焊偏(Welding offset)、无盖(No cover)、坏点(Bad point)、重度不良(Severely bad)。

四、实验效果(部分展示)

为了评估算法性能,我们将本文提出的YOLOv5s-4Scale-DCN改进算法与YOLOv5s、YOLOv5l、YOLOv5m、YOLOv5n、YOLOv5x、YOLOv7、YOLOv tiny、YOLOv7x、Faster R-CNN[26]和SSD[27]10种经典算法在自制据集上进行检测性能比较,所有实验均在相同参数设置下进行。

实验结果如表4所示,由表4可知,改进后的算法,mAP达到了91.0%,FPS达到了113.6,相比其他算法综合效果最佳。

五、实验结论

综上所述,改进后的YOLOv5s-4Scale-DCN算法漏检率低、误检率低、识别精度高、检测速度快,综合性能更强,有效降低了误检率、漏检率。

六、投稿期刊介绍

注:论文原文出自 陈彦蓉,高刃,吴文欢,唐海,袁磊.改进YOLOv5的新能源电池集流盘缺陷检测方法[J/OL].电子测量与仪器学报.

改进YOLOv5的新能源电池集流盘缺陷检测方法 - 中国知网

解读的系列文章,本人已进行创新点代码复现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/51881.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vuejs源码阅读之优化器

前面讲过vuejs中解析器是把html模版解析成AST,而优化器的作用是在AST中找到静态子树并打上标记。 静态子树是指的那些在AST中永远不会发生变化的节点。 例如,一个纯文本节点就是静态子树,而带变量的文本节点就不是静态子树,因为…

TCP网络通信编程之网络上传文件

【图片】 【思路解析】 【客户端代码】 import java.io.*; import java.net.InetAddress; import java.net.Socket; import java.net.UnknownHostException;/*** ProjectName: Study* FileName: TCPFileUploadClient* author:HWJ* Data: 2023/7/29 18:44*/ public class TCPFil…

如何快速模拟一个后端 API

第一步:创建一个文件夹,用来存储你的数据 数据: {"todos": [{ "id": 1, "text": "学习html44", "done": false },{ "id": 2, "text": "学习css", "…

【QT】Day 2

1> 继续完善登录框&#xff0c;当登录成功时&#xff0c;关闭登录界面&#xff0c;跳转到新的界面中 second.h #ifndef SECOND_H #define SECOND_H#include <QWidget>namespace Ui { class second; }class second : public QWidget {Q_OBJECTpublic:explicit second…

Abaqus 导出单元刚度矩阵和全局刚度矩阵

Abaqus 导出单元刚度矩阵和全局刚度矩阵 首次创建&#xff1a;2023.7.29 最后更新&#xff1a;2023.7.29 如有什么改进的地方&#xff0c;欢迎大家讨论&#xff01; 详细情况请查阅&#xff1a;Abaqus Analysis User’s Guide 一、Abaqus 导出单元刚度矩阵 1.生成单元刚度矩阵…

C语言手撕顺序表

目录 一、概念 1、静态顺序表&#xff1a;使用定长数组存储元素。 2、动态顺序表&#xff1a;使用动态开辟的数组存储 二、接口实现 1、对顺序表的初始化 2、对数据的销毁 3、对数据的打印 4、检查是否需要扩容 5、尾插 6、头插 7、尾删 8、头删 9、在pos位置插入x …

如何有效地使用ChatGPT写小说讲故事?

​构思故事情节&#xff0c;虽有趣但耗时&#xff0c;容易陷入写作瓶颈。ChatGPT可提供灵感&#xff0c;帮你解决写作难题。要写出引人入胜的故事&#xff0c;关键在于抓住八个要素——主题、人物、视角、背景、情节、语气、冲突和解决办法。 直接给出故事模板&#xff0c;你可…

WIZnet W5500-EVB-Pico 静态IP配置教程(二)

W5500是一款高性价比的 以太网芯片&#xff0c;其全球独一无二的全硬件TCP、IP协议栈专利技术&#xff0c;解决了嵌入式以太网的接入问题&#xff0c;简单易用&#xff0c;安全稳定&#xff0c;是物联网设备的首选解决方案。WIZnet提供完善的配套资料以及实时周到的技术支持服务…

TCP网络通信编程之字节流

目录 【TCP字节流编程】 // 网络编程中&#xff0c;一定是server端先运行 【案例1】 【思路分析】 【客户端代码】 【服务端代码】 【结果展示】 【案例2】 【题目描述】 【注意事项】 【服务端代码】 【客户端代码】 【代码结果】 【TCP字节流编程】 // 网络编程中&a…

《向量数据库指南》——Milvus Cloud2.2.12 易用性,可视化,自动化大幅提升

Milvus Cloud又迎版本升级,三大新特性全力加持,易用性再上新台阶! 近期,Milvus Cloud上线了 2.2.12 版本,此次更新不仅一次性增加了支持 Restful API、召回原始向量、json_contains 函数这三大特性,还优化了 standalone 模式下的 CPU 使用、查询链路等性能,用一句话总…

Mysql定时删除表数据

由于用户环境有张日志表每天程序都在狂插数据&#xff0c;导致不到一个月时间&#xff0c;这张日志表就高达200多万条记录&#xff0c;但是日志刷新较快&#xff0c;里面很多日志没什么作用&#xff0c;就写了个定时器&#xff0c;定期删除这张表的数据。 首先查看mysql是否开启…

银河麒麟安装mysql数据库(mariadb)-银河麒麟安装JDK-银河麒麟安装nginx(附安装包)

银河麒麟离线全套安装教程&#xff08;手把手教程&#xff09; 1.银河麒麟服务器系统安装mysql数据库&#xff08;mariadb&#xff09; 2.银河麒麟桌面系统安装mysql数据库&#xff08;mariadb&#xff09; 3.银河麒麟服务器系统安装JDK 4.银河麒麟桌面系统安装JDK 5.银河麒麟…

LeetCode 2500. 删除每行中的最大值

【LetMeFly】2500.删除每行中的最大值 力扣题目链接&#xff1a;https://leetcode.cn/problems/delete-greatest-value-in-each-row/ 给你一个 m x n 大小的矩阵 grid &#xff0c;由若干正整数组成。 执行下述操作&#xff0c;直到 grid 变为空矩阵&#xff1a; 从每一行删…

将Spring Session存储到Redis中实现持久化

文章目录 Session持久化1. 添加依赖2. 配置redis连接信息3. 存储和读取session从Redis Session持久化 1. 添加依赖 在项目中添加session依赖和redis依赖&#xff0c;如下所示&#xff1a; <dependency><groupId>org.springframework.boot</groupId><art…

求三个球面交点的高效解法

文章目录 一、问题描述二、推导步骤代数法几何法 三、MATLAB代码 一、问题描述 如图&#xff0c;已知三个球面的球心坐标分别为 P 1 ( x 1 , y 1 , z 1 ) , P 2 ( x 2 , y 2 , z 2 ) , P 3 ( x 3 , y 3 , z 3 ) P_1(x_1,y_1,z_1),P_2(x_2,y_2,z_2),P_3(x_3,y_3,z_3) P1​(x1​,…

【小波尺度谱】从分段离散小波变换计算小波尺度谱研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

Cpp学习——通过日期类来了解Cpp中的运算符重载

目录 一&#xff0c;日期类 二&#xff0c;运算符重载 运算符重载1(比较&#xff09; 1.< 2. 复用 3.> 4.! 5.< 6.> 运算符重载2(日期加减&#xff09; 0.准备条件------计算每月的日期函数 1. 2. 3.- 4.- 5.前置 6.后置 7前置-- 6.后置-- 7.计…

接口自动化测试平台

下载了大神的EasyTest项目demo修改了下<https://testerhome.com/topics/12648 原地址>。也有看另一位大神的HttpRunnerManager<https://github.com/HttpRunner/HttpRunnerManager 原地址>&#xff0c;由于水平有限&#xff0c;感觉有点复杂~~~ 【整整200集】超超超…

多线程案例 | 单例模式、阻塞队列、定时器、线程池

多线程案例 1、案例一&#xff1a;线程安全的单例模式 单例模式 单例模式是设计模式的一种 什么是设计模式&#xff1f; 设计模式好比象棋中的 “棋谱”&#xff0c;红方当头炮&#xff0c;黑方马来跳&#xff0c;针对红方的一些走法&#xff0c;黑方应招的时候有一些固定的…

在OK3588板卡上部署模型实现OCR应用

一、主机模型转换 我们依旧采用FastDeploy来部署应用深度学习模型到OK3588板卡上 进入主机Ubuntu的虚拟环境 conda activate ok3588 安装rknn-toolkit2&#xff08;该工具不能在OK3588板卡上完成模型转换&#xff09; git clone https://github.com/rockchip-linux/rknn-to…