稀碎从零算法笔记Day39-LeetCode:有向无环图中一个节点的所有祖先

感觉写的越来越难了hhh,一晚上只研究明白了2道题

题型:拓扑排序、BFS、图

链接:2192. 有向无环图中一个节点的所有祖先 - 力扣(LeetCode)

来源:LeetCode

题目描述(红字为笔者添加)

给你一个正整数 n ,它表示一个 有向无环图 中节点的数目,节点编号为 0 到 n - 1 (包括两者)。

给你一个二维整数数组 edges ,其中 edges[i] = [fromi, toi] 表示图中一条从 fromi 到 toi 的单向边。

请你返回一个数组 answer,其中 answer[i]是第 i 个节点的所有 祖先 ,这些祖先节点 升序 排序。

如果 u 通过一系列边,能够到达 v ,那么我们称节点 u 是节点 v 的 祖先 节点。

省流:求每个节点 前面的节点的集合

题目样例

示例 1:

输入:n = 8, edgeList = [[0,3],[0,4],[1,3],[2,4],[2,7],[3,5],[3,6],[3,7],[4,6]]
输出:[[],[],[],[0,1],[0,2],[0,1,3],[0,1,2,3,4],[0,1,2,3]]
解释:
上图为输入所对应的图。
- 节点 0 ,1 和 2 没有任何祖先。
- 节点 3 有 2 个祖先 0 和 1 。
- 节点 4 有 2 个祖先 0 和 2 。
- 节点 5 有 3 个祖先 0 ,1 和 3 。
- 节点 6 有 5 个祖先 0 ,1 ,2 ,3 和 4 。
- 节点 7 有 4 个祖先 0 ,1 ,2 和 3 。

示例 2:

输入:n = 5, edgeList = [[0,1],[0,2],[0,3],[0,4],[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
输出:[[],[0],[0,1],[0,1,2],[0,1,2,3]]
解释:
上图为输入所对应的图。
- 节点 0 没有任何祖先。
- 节点 1 有 1 个祖先 0 。
- 节点 2 有 2 个祖先 0 和 1 。
- 节点 3 有 3 个祖先 0 ,1 和 2 。
- 节点 4 有 4 个祖先 0 ,1 ,2 和 3 。

提示:

  • 1 <= n <= 1000
  • 0 <= edges.length <= min(2000, n * (n - 1) / 2)
  • edges[i].length == 2
  • 0 <= fromi, toi <= n - 1
  • fromi != toi
  • 图中不会有重边。
  • 图是 有向 且 无环 的。

题目思路

题还挺人性化,不需要判断是否为环

找【祖父节点】,看这个图的时候还是挺容易想到【拓扑排序】的——因为拓扑排序能求入度为0的点。而每个点的入度,可以通过一个一维数组来存。

求祖父节点,以拓扑排序的顺序来遍历n个点,通过看【入度为0的点的后继】,来更新【后继】的【祖先集合】。这里为了避免【祖先集合】有重复的情况,可以用一个二维数组vector<unordered_set<int>> 来表示 i 的【祖先集合】。

存储【拓扑排序】这样的遍历顺序,可以用队列先存储入度为0的点,之后在更新【祖先集合】时,当 后继 继承完 前驱 的【祖父集合】后,让后继的入度-1 。 当后继的入度为0后,再添加到队列中,实现拓扑排序的更新。

遍历一个点及其后继,可以使用【邻接表】这个数据结构——实现可以用二维数组,其中里面的数组存储 i 的后继。

C++代码

class Solution {
public:
    vector<vector<int>> getAncestors(int n, vector<vector<int>>& edges) {
        vector<unordered_set<int>> ancestor(n);//表示每个点的祖先的集合
        vector<vector<int>> neighbour(n);//邻接表
        vector<int> indegree(n,0);//记录入度的集合
        
        // 初始化邻接表、入度表
        for(auto edge : edges)
        {
            neighbour[edge[0]].push_back(edge[1]);
            ++indegree[edge[1]];
        }

        //用一个队列来存拓扑排序
        queue<int> come;
        for(int i=0;i<n;i++)
        {
            if(indegree[i] == 0)
                come.push(i);
        }

        //  更新集合
        while(!come.empty())
        {
            int head = come.front();
            come.pop();
            
            // 看 head 的邻接表
            for(int neibo : neighbour[head])
            {
                ancestor[neibo].insert(head);
                --indegree[neibo];
                for(int anc : ancestor[head])
                    ancestor[neibo].insert(anc);
                if(indegree[neibo] == 0)
                    come.push(neibo);
            }
        }

        // 答案数组
        vector<vector<int>> ans(n);
        for(int i=0;i<n;i++)
        {
            for(int num : ancestor[i])//遍历祖先集合
            {
                ans[i].push_back(num);
            }
            sort(ans[i].begin(),ans[i].end());
        }
        return ans;   
    }
};

结算页面

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/516763.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

FPGA实现Canny算法(Verilog)

在边缘检测算法里面Sobel是比较简单的一个算法&#xff0c;但是其检测出来的边缘往往是比较粗的&#xff0c;效果不是很好&#xff0c;因为我们最理想的边缘肯定就是一个宽度为1的细线。 Canny算法在此基础上进行了改进&#xff0c;通过使用边缘的梯度信息进行非最大值抑制(NM…

基于单片机的数字万用表设计

**单片机设计介绍&#xff0c;基于单片机的数字万用表设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的数字万用表设计概要是关于使用单片机技术来实现数字万用表功能的一种设计方案。下面将详细概述该设计的各个…

C++ | Leetcode C++题解之第8题字符串转换整数atoi

题目&#xff1a; 题解&#xff1a; class Automaton {string state "start";unordered_map<string, vector<string>> table {{"start", {"start", "signed", "in_number", "end"}},{"signed…

Linux 多线程与线程控制(程序均有详细注释)

多线程与线程控制 线程的基本概念线程的特点页表多线程 线程控制线程的创建线程传参线程id资源回收---线程等待线程id和LWP 封装一个线程库线程互斥和线程同步线程互斥基本原理线程安全VS线程不安全锁的诞生可重入VS线程安全 死锁死锁的定义 线程同步条件变量接口 生成消费者模…

使用阿里云试用Elasticsearch学习:1.2 基础入门——数据输入和输出

什么是文档? 在大多数应用中&#xff0c;多数实体或对象可以被序列化为包含键值对的 JSON 对象。 一个 键 可以是一个字段或字段的名称&#xff0c;一个 值 可以是一个字符串&#xff0c;一个数字&#xff0c;一个布尔值&#xff0c; 另一个对象&#xff0c;一些数组值&#…

全流程基于GIS、python机器学习技术的地质灾害风险评价与信息化建库应用

入门篇&#xff0c;ArcGIS软件的快速入门与GIS数据源的获取与理解&#xff1b;方法篇&#xff0c;致灾因子提取方法、灾害危险性因子分析指标体系的建立方法和灾害危险性评价模型构建方法&#xff1b;拓展篇&#xff0c;GIS在灾害重建中的应用方法&#xff1b;高阶篇&#xff1…

Cisco路由器配置IPv6 Manual隧道

Cisco路由器配置IPv6 Manual隧道 IPv6与IPv4共存的方式 IPv6与IPv4共存方式大致有三种&#xff1a; 双栈&#xff1a;要求网络中所有设备均同时支持IPv4和IPv6转换&#xff1a;转换这种方式将IPv6协议的报头转换成IPv4协议报头。隧道&#xff1a;假定两个IPv6节点要使用IPv6…

redis---哨兵模式Sentinel

上次搭建了一主两从的Redis集群&#xff0c;来实现了一定程度上的高可用。相比一个单节点的Redis来说已经有了很大的提升。 但是这个集群还是有一些问题的&#xff0c;主节点宕机了&#xff0c;我们还是需要手动去把另一台从节点提升为主节点&#xff0c;这样就不能实现真正的…

JDK、JRE和JDK的关系

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a;每天一个知识点 ✨特色专栏&#xff1a…

【考研经验贴】24考研860软件工程佛系上岸经验分享【丰富简历、初复试攻略、导师志愿、资料汇总】

&#x1f60a;你好&#xff0c;我是小航&#xff0c;一个正在变秃、变强的文艺倾年。 &#x1f514;本文讲解24考研860软件工程佛系上岸经验分享【丰富简历、初复试攻略、导师志愿、资料汇总】&#xff0c;期待与你一同探索、学习、进步&#xff0c;一起卷起来叭&#xff01; 目…

《YOLOv8:从入门到实战》专栏介绍 专栏目录

&#x1f31f;YOLOv8&#xff1a;从入门到实战 | 目录 | 使用教程&#x1f31f; 本专栏涵盖了丰富的YOLOv8基础知识源码解析入门实践算法改进项目实战系列教程&#xff0c;专为学习YOLOv8的同学而设计&#xff0c;堪称全网最详细的教程&#xff01;该专栏针对YOLOv8内容的学习…

蓝桥杯2015年第十三届省赛真题-三羊献瑞

一、题目 观察下面的加法算式&#xff1a; 祥 瑞 生 辉 三 羊 献 瑞 ---------------------- 三 羊 生 瑞 气 (如果有对齐问题&#xff0c;可以参看【图1】) 其中&#xff0c;相同的汉字代表相同的数字&#xff0c;不同的汉字代表不同的数字。 请你填写“三羊献瑞”所…

AcWing-游戏

1388. 游戏 - AcWing题库 所需知识&#xff1a;博弈论&#xff0c;区间dp 由于双方都采取最优的策略来取数字&#xff0c;所以结果为确定的&#xff0c;有可能会有多个不同的过程&#xff0c;但是我们只需要关注最终结果就行了。 方法一&#xff1a; 定义dp[i][j] 表示区间…

【Pt】马灯贴图绘制过程 05-铁丝与渲染出图

目录 效果 步骤 一、基本材质 二、浮尘 三、渲染 效果 步骤 一、基本材质 CtrlAlt鼠标右键选中指定的纹理集 在智能材质中将“Iron Forged Old”加入图层 将智能材质“Iron Forged Old”文件夹打开&#xff0c;将图层“Base”和“Edge”的基本颜色改暗一点 二、浮尘 新…

解锁行业潜力:国内十大低代码平台全面盘点

在数字化转型的浪潮中&#xff0c;低代码开发平台以其快速开发、简化流程和降低技术门槛的优势&#xff0c;成为企业信息化建设的重要推手。 本篇文章将为您盘点十个低代码平台有&#xff1a;Zoho Creator、明道云、腾讯云低代码平台、华为云Astro、金蝶云苍穹、用友YonBuilder…

VS Code 配置 cmake

手动添加 CMake 编译器的搜索路径 如果没有设置上面的路径&#xff0c;有些编译器是找不到的

兼顾性能的数据倾斜处理方案

目录 前言 一、场景描述 二、常见的优化方法 2.1 Mapjoin 2.2 特殊值/空值打散 2.3 热点值打散&#xff0c;副表呈倍数扩散 2.4 热点数据单独处理/SkewJoin 2.5 方案总结 三、Distmapjoin 3.1 核心思路 3.2 代码实现 3.3 真实效果 四、方案总结 文章主要是介绍在支…

使用自己训练的superpoint与superglue模型进行图像配准

基于官方团队发布的预训练模型&#xff0c;使用SuperPoint与SuperGlue实现图像配准&#xff0c;可以参考https://blog.csdn.net/a486259/article/details/129093084 基于官方团队发布的代码训练自己的模型&#xff0c;可以参考https://blog.csdn.net/a486259/article/details/…

xilinx原语详解及仿真——ISERDESE2

前面在讲解HDMI接口之前&#xff0c;讲解过IDDR、ODDR、OSERDESE2、IBUFDS等原语&#xff0c;之后一直有读者在问什么时候更新ISERDESE2这个原语。前文讲解过这些原语都在HDMI或者RGMII中使用过&#xff0c;但是ISERDESE2这个原语目前我的板子除了HDMI输入&#xff0c;其余并不…

Python概率编程库之pymc使用详解

概要 Python PyMC库是一个强大的概率编程库,用于贝叶斯统计建模和蒙特卡罗采样。它提供了丰富的功能和灵活的API,使得贝叶斯推断和概率建模变得简单而有效。 安装与配置 首先,看看如何安装Python PyMC库并进行基本配置: pip install pymc安装完成后,可以导入PyMC库并开…