在 “小小容器” WasmEdge 里运行小小羊驼 llama 2

 昨天,特斯拉前 AI 总监、OpenAI 联合创始人 Andrej Karpathy 开源了 llama2.c 。 只用 500 行纯 C 语言就能训练和推理 llama 2 模型的框架,没有任何繁杂的 python 依赖。这个项目一推出就受到大家的追捧,24 小时内 GitHub 收获 4000 颗星!

可是,C 编译的原生机器码不能跨平台,不安全,也不可被调度。这些问题使得它的应用场景非常有限。这时,一个大胆的想法油然而生!把 llama2.c 编译成 Wasm 在 WasmEdge 里运行!

​图片来自 https://github.com/karpathy/llama2.c 



这么做的好处是:

  • 轻量级:一个 Wasm 文件只有几十 KB 大小,相比于 Python 镜像动辄几百上千 MB,差了一万倍。
  • 安全:沙箱机制,提供隔离性,适合多租户的云部署。
  • 可移植:Wasm 文件无需任何改变,可以在 x86, ARM, Apple, RISC-V 机器上运行
  • 性能:没有冷启动,且运行速度接近本机速度
  • 能够被 Docker 和 kuberbetes 等容器工具进行管理


下面,我们来具体看看是如何实现的。

 

先决条件

请参考 WasmEdge 的官方文档安装 WasmEdge runtime。

curl -sSf https://raw.githubusercontent.com/WasmEdge/WasmEdge/master/utils/install.sh | sudo bash -s — -p /usr/local

准备 wasi-sdk

export WASI_VERSION=20
export WASI_VERSION_FULL=${WASI_VERSION}.0
wget https://github.com/WebAssembly/wasi-sdk/releases/download/wasi-sdk-${WASI_VERSION}/wasi-sdk-${WASI_VERSION_FULL}-linux.tar.gz
tar xvf wasi-sdk-${WASI_VERSION_FULL}-linux.tar.gz
export WASI_SDK_PATH=`pwd`/wasi-sdk-${WASI_VERSION_FULL}
CC="${WASI_SDK_PATH}/bin/clang --sysroot=${WASI_SDK_PATH}/share/wasi-sysroot"

把 llama2.c 编译成 Wasm

git clone https://github.com/karpathy/llama2.c.git
cd llama2.c
$CC run.c -D_WASI_EMULATED_PROCESS_CLOCKS -lwasi-emulated-process-clocks -o run.wasm

优化 wasm file 并且运行


这里我们将使用 WasmEdge 的 AOT 编译器对编译好的 Wasm 文件进行优化,以提升 Wasm 的性能。

$ wget https://karpathy.ai/llama2c/model.bin -P out
$ wasmedgec run.wasm run-aot.wasm
[2023-07-24 16:39:52.851] [info] compile start
[2023-07-24 16:39:52.858] [info] verify start
[2023-07-24 16:39:52.862] [info] optimize start
[2023-07-24 16:39:53.251] [info] codegen start
[2023-07-24 16:39:53.608] [info] output start
[2023-07-24 16:39:53.611] [info] compile done
[2023-07-24 16:39:53.611] [info] output start


运行这个 wasm 文件

$ wasmedge --dir .:. run-aot.wasm out/model.bin


输出如下:

Once upon a time, there was a wealthy man. He lived in a big house with many things. The wealthy man liked to play in the fog.
One day, the wealthy man saw that the fog was increasing. The fog was getting stronger and the weight on the man's body made it hard to walk. The man said, "Oh no, I need to find a place to stop."
The wealthy man walked and walked, looking for a safe place. Soon, he found a small house. To his surprise, the house was full of toys and candy! The man said, "I found this house of good value. I can keep all the toys and candy in it." And from that day on, the wealthy man never played in the fog again.
<s>
 Once upon a time, there was a little girl named Lily. She loved to play with her toys and sing songs. One day, Lily's friend Timmy came over to play.
"Hi Lily, do you want to play with my new toy car?" asked Timmy.
"Yay, thank you!" replied Lily.
But after a while, Lily started to feel sleep
achieved tok/s: 30.738912

就是这样啦。 WasmEdge 也将逐步支持 Llama2 7B 及更大的 model。


最后。 如果你有兴趣使用 Wasm 作为 Python 的高性能替代品在生产环境中进行 AI 推理,请查看我们基于 Rust 的库 mediapipe-rs。 这是 Google 的 mediapipe 模型。同时支持 TF Lite 和 Pytorch!

https://github.com/WasmEdge/mediapipe-rsicon-default.png?t=N6B9https://github.com/WasmEdge/mediapipe-rs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/51643.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

机器学习深度学习——权重衰减

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——模型选择、欠拟合和过拟合 &#x1f4da;订阅专栏&#xff1a;机器学习&&深度学习 希望文章对你…

Spring Boot 缓存 Cache 入门

Spring Boot 缓存 Cache 入门 1.概述 在系统访问量越来越大之后&#xff0c;往往最先出现瓶颈的往往是数据库。而为了减少数据库的压力&#xff0c;我们可以选择让产品砍掉消耗数据库性能的需求。 当然也可以引入缓存,在引入缓存之后&#xff0c;我们的读操作的代码&#xff…

嵌入式硬件系统的基本组成

嵌入式硬件系统的基本组成 嵌入式系统的硬件是以包含嵌入式微处理器的SOC为核心&#xff0c;主要由SOC、总线、存储器、输入/输出接口和设备组成。 嵌入式微处理器 每个嵌入式系统至少包含一个嵌入式微处理器 嵌入式微处理器体系结构可采用冯.诺依曼&#xff08;Von Neumann&…

leetcode 55. 跳跃游戏

2023.7.29 本题不用纠结于可以跳几步&#xff0c;可以聚焦于覆盖范围&#xff0c;即 当前位置当前跳数 能够覆盖的范围&#xff0c;若这个范围足以到达最后一个位置&#xff0c;则返回true&#xff1b;若for循环结束&#xff0c;则还没返回true&#xff0c;则返回false。 下面看…

24考研数据结构-第一章 绪论

数据结构 引用文章第一章&#xff1a;绪论1.0 数据结构在学什么1.1 数据结构的基本概念1.2 数据结构的三要素1.3 算法的基本概念1.4 算法的时间复杂度1.4.1 渐近时间复杂度1.4.2 常对幂指阶1.4.3 时间复杂度的计算1.4.4 最好与最坏时间复杂度 1.5 算法的空间复杂度1.5.1 空间复…

如何建立Docker私有仓库?

文章目录 docker私有仓库harborHarbor仓库部署Harbor仓库使用 docker私有仓库 Docker 私有仓库是一个用于存储和管理 Docker 镜像的私有存储库。它允许你在内部网络中创建和管理 Docker 镜像&#xff0c;并提供了更好的安全性和控制&#xff0c;因为你可以完全控制谁能够访问和…

jmeter接口测试、压力测试简单实现

jmeter测试的组件执行顺序&#xff1a; 测试计划—>线程组—>配置元件—>前置处理器—>定时器—>逻辑控制器—>取样器—>后置处理器—>断言—>监听器 组件的作用范围&#xff1a; 同级组件同级组件下的子组件父组件 目前市面上的三类接口 1、基…

PyCharm安装pip依赖,如何添加国内镜像源?

目录 前言 PyCharm如何安装依赖 PyCharm如何配置国内镜像源 前言 首先我们都知道&#xff0c;使用pip安装依赖的方式&#xff0c;却很少有人知道使用PyCharm如何安装依赖。 PyCharm如何安装依赖 但你会发现&#xff0c;基本都是安装失败的&#xff0c;因为你是去外网下载的…

[JAVAee]文件操作-IO

本文章讲述了通过java对文件进行IO操作 IO:input/output,输入/输出. 建议配合文章末尾实例食用 目录 文件 文件的管理 文件的路径 文件的分类 文件系统的操作 File类的构造方法 File的常用方法 文件内容的读写 FileInputStream读取文件 构造方法 常用方法 Scan…

探索容器镜像安全管理之道

邓宇星&#xff0c;Rancher 中国软件架构师&#xff0c;7 年云原生领域经验&#xff0c;参与 Rancher 1.x 到 Rancher 2.x 版本迭代变化&#xff0c;目前负责 Rancher for openEuler(RFO)项目开发。 最近 Rancher v2.7.4 发布了&#xff0c;作为一个安全更新版本&#xff0c;也…

【bar堆叠图形绘制】

绘制条形图示例 在数据可视化中&#xff0c;条形图是一种常用的图表类型&#xff0c;用于比较不同类别的数据值。Python的matplotlib库为我们提供了方便易用的功能来绘制条形图。 1. 基本条形图 首先&#xff0c;我们展示如何绘制基本的条形图。假设我们有一个包含十个类别的…

ElasticSearch 7.x

前言 elastic表示可伸缩&#xff0c;search表示查询。所以es的核心即为查询。通常情况下&#xff0c;我们的数据可以分为三类&#xff1a;结构化数据、非结构化数据、半结构化数据。 结构化数据&#xff1a;一般会用特定的结构来组织和管理数据&#xff0c;表现为二维表结构。…

【Android常见问题(五)】- Flutter项目性能优化

文章目录 知识回顾前言源码分析1. 渲染过程2. 分析工具3. 优化方法合理使用const关键词合理使用组件管理着色器编译垃圾 知识回顾 前言 项目迭代开发一定程度后&#xff0c;性能优化是重中之重&#xff0c;其中包括了包体积&#xff0c;UI 渲染、交互等多个方面。 通过 Flutt…

码农该如何延长周末体验感

码农该如何延长周末体验感 码农该如何延长周末体验感 码农该如何延长周末体验感1.制定合理的工作计划&#xff1a;2.实践工作与生活的平衡&#xff1a;3.学习新技术或扩展知识领域4.参与开源项目或个人项目&#xff1a;5.与同事或朋友组织活动&#xff1a;6.自己写博客或者总结…

百万数据快速导入导出

百万数据快速导入 pom <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.2.0</version></dependency>Resourceprivate SalariesListener salariesListener;private ExecutorService…

求解方程x^2=a的根,不使用库函数直接求解(不动点迭代法)

首先可以将方程两边同时加上x&#xff0c;&#xff0c;这时候两边同时再除以1x&#xff0c;就得到了&#xff0c;变形为。&#xff08;变性后的迭代式不唯一&#xff0c;这里随便选取一个&#xff09; 当x是准确值的时候&#xff0c;两边应该是相等的&#xff0c;如果x是近似值…

【Git】分支管理之创建、切换、合并、删除分支以及冲突处理

目录 一、理解分支 二、创建、切换、合并分支 三、删除分支 四、冲突处理 五、合并模式 六、合并策略 七、Bug分支处理 八、强制删除分支 一、理解分支 master其实就是一个指针 &#xff0c;他指向的是主分支最近一次commit。我们可以创建新的分支&#xff0c;在新的分…

Arcgis之 KML/KMZ文件转shp

一般我们在Goole Earth上勾画的区域导出后都为KML或者KMZ格式的&#xff0c;但无法在arcgis等软件上直接应用&#xff0c;故需进行一定的转换 1.打开ArcMap&#xff0c;选择ArcToolbox->Conversion Tools->From KML->KML To Layer 得到如下结果&#xff08;由于本KML…

请问学JavaScript 前要学html 和css 吗?

前言 html和css可以理解为是一个网站的骨架和皮肤&#xff0c;这两部分做好后整个网站的外观展示的完成度基本就有了个90%左右&#xff0c;所以在学习js前是需要学习html和css 的&#xff0c;这两部分不用花特别多的时间&#xff08;虽然css如果想做一些非常炫酷的效果个人认为…

什么是SVM算法?硬间隔和软间隔的分类问题

SVM全称是supported vector machine(支持向量机)&#xff0c;即寻找到一个超平面使样本分成两类&#xff0c;并且间隔最大。 SVM能够执行线性或⾮线性分类、回归&#xff0c;甚至是异常值检测任务。它是机器学习领域最受欢迎的模型之一。SVM特别适用于中小型复杂数据集的分类。…