【深度学习】深度学习md笔记总结第3篇:TensorFlow介绍,学习目标【附代码文档】

深度学习笔记完整教程(附代码资料)主要内容讲述:深度学习课程,深度学习介绍要求,目标,学习目标,1.1.1 区别,学习目标,学习目标。TensorFlow介绍,2.4 张量学习目标,2.4.1 张量(Tensor),2.4.2 创建张量的指令,2.4.3 张量的变换,2.4.4 张量的数学运算,学习目标。TensorFlow介绍,1.2 神经网络基础学习目标。TensorFlow介绍,总结学习目标,1.3.1 神经网络,1.3.2 playground使用,学习目标,1.4.1 softmax回归,1.4.2 交叉熵损失。神经网络与tf.keras,1.3 Tensorflow实现神经网络学习目标,1.3.1 TensorFlow keras介绍,1.3.2 案例:实现多层神经网络进行时装分类。神经网络与tf.keras,1.4 深层神经网络学习目标。卷积神经网络,3.1 卷积神经网络(CNN)原理学习目标。卷积神经网络,3.1 卷积神经网络(CNN)原理学习目标。卷积神经网络,2.2案例:CIFAR100类别分类学习目标,2.2.1 CIFAR100数据集介绍,2.2.2 API 使用,2.2.3 步骤分析以及代码实现(缩减版LeNet5),学习目标。卷积神经网络,2.4 BN与神经网络调优学习目标。卷积神经网络,2.4 经典分类网络结构学习目标,2.4.6 案例:使用pre_trained模型进行VGG预测,2.4.7 总结。卷积神经网络,2.5 CNN网络实战技巧学习目标,3.1.1 案例:基于VGG对五种图片类别识别的迁移学习,3.1.2 数据增强的作用。卷积神经网络,总结学习目标,1.1.1 项目演示,1.1.2 项目结构,1.1.3 项目知识点,学习目标,1.2.1 安装。商品物体检测项目介绍,3.4 Fast R-CNN。YOLO与SSD,4.3 案例:SSD进行物体检测4.3.1 案例效果,4.3.2 案例需求,4.3.3 步骤分析以及代码,2.1.1 常用目标检测数据集,2.1.2 pascal voc数据集介绍,2.1.3 XML。商品检测数据集训练,5.2 标注数据读取与存储5.2.1 案例:xml读取本地文件存储到pkl,5.3.1 案例训练结果,5.3.2 案例思路,5.3.3 多GPU训练代码修改,5.4.1 预测代码,5.4.1 keras 模型进行TensorFlow导出。

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


全套教程部分目录:


部分文件图片:

TensorFlow介绍

说明TensorFlow的数据流图结构
应用TensorFlow操作图
说明会话在TensorFlow程序中的作用
应用TensorFlow实现张量的创建、形状类型修改操作
应用Variable实现变量op的创建
应用Tensorboard实现图结构以及张量值的显示
应用tf.train.saver实现TensorFlow的模型保存以及加载
应用tf.app.flags实现命令行参数添加和使用
应用TensorFlow实现线性回归

1.2 神经网络基础

学习目标

  • 目标

  • 知道逻辑回归的算法计算输出、损失函数

  • 知道导数的计算图
  • 知道逻辑回归的梯度下降算法
  • 知道多样本的向量计算

  • 应用

  • 应用完成向量化运算

  • 应用完成一个单神经元神经网络的结构

1.2.1 Logistic回归

1.2.1.1 Logistic回归

逻辑回归是一个主要用于二分分类类的算法。那么逻辑回归是给定一个 x x x, 输出一个该样本属于1对应类别的预测概率 y ^ = P ( y = 1 ∣ x ) \hat{y}=P(y=1|x) y^=P(y=1x)

Logistic 回归中使用的参数如下:

e − z e^{-z} ez的函数如下

例如:

损失计算过程

1.2.1.2 逻辑回归损失函数

损失函数(loss function)用于衡量预测结果与真实值之间的误差。最简单的损失函数定义方式为平方差损失:

L ( y ^ , y ) = 1 2 ( y ^ − y ) 2 L(\hat{y},y) = \frac{1}{2}(\hat{y}-y)^2 L(y^,y)=21(y^y)2

逻辑回归一般使用 L ( y ^ , y ) = − ( y log y ^ ) − ( 1 − y ) log ( 1 − y ^ ) L(\hat{y},y) = -(y\log\hat{y})-(1-y)\log(1-\hat{y}) L(y^,y)=(ylogy^)(1y)log(1y^)

该式子的理解:

  • 如果y=1,损失为 − log y ^ - \log\hat{y} logy^,那么要想损失越小, y ^ \hat{y} y^的值必须越大,即越趋近于或者等于1
  • 如果y=0,损失为 1 log ( 1 − y ^ ) 1\log(1-\hat{y}) 1log(1y^),那么要想损失越小,那么 y ^ \hat{y} y^的值越小,即趋近于或者等于0

损失函数是在单个训练样本中定义的,它衡量了在单个训练样本上的表现。代价函数(cost function)衡量的是在全体训练样本上的表现,即衡量参数 w 和 b 的效果,所有训练样本的损失平均值

J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) J(w,b) = \frac{1}{m}\sum_{i=1}^mL(\hat{y}^{(i)},y^{(i)}) J(w,b)=m1i=1mL(y^(i),y(i))

1.2.2 梯度下降算法

目的:使损失函数的值找到最小值

方式:梯度下降

函数的梯度(gradient)指出了函数的最陡增长方向。梯度的方向走,函数增长得就越快。那么按梯度的负方向走,函数值自然就降低得最快了。模型的训练目标即是寻找合适的 w 与 b 以最小化代价函数值。假设 w 与 b 都是一维实数,那么可以得到如下的 J 关于 w 与 b 的图:

可以看到,成本函数 J 是一个凸函数,与非凸函数的区别在于其不含有多个局部最低。

参数w和b的更新公式为:

w : = w − α d J ( w , b ) d w w := w - \alpha\frac{dJ(w, b)}{dw} w:=wαdwdJ(w,b) b : = b − α d J ( w , b ) d b b := b - \alpha\frac{dJ(w, b)}{db} b:=bαdbdJ(w,b)

注:其中 α 表示学习速率,即每次更新的 w 的步伐长度。当 w 大于最优解 w′ 时,导数大于 0,那么 w 就会向更小的方向更新。反之当 w 小于最优解 w′ 时,导数小于 0,那么 w 就会向更大的方向更新。迭代直到收敛。

通过平面来理解梯度下降过程:

1.2.3 导数

理解梯度下降的过程之后,我们通过例子来说明梯度下降在计算导数意义或者说这个导数的意义。

1.2.3.1 导数

导数也可以理解成某一点处的斜率。斜率这个词更直观一些。

  • 各点处的导数值一样

我们看到这里有一条直线,这条直线的斜率为4。我们来计算一个例子

例:取一点为a=2,那么y的值为8,我们稍微增加a的值为a=2.001,那么y的值为8.004,也就是当a增加了0.001,随后y增加了0.004,即4倍

那么我们的这个斜率可以理解为当一个点偏移一个不可估量的小的值,所增加的为4倍。

可以记做 f ( a ) d a \frac{f(a)}{da} daf(a)或者 d d a f ( a ) \frac{d}{da}f(a) dadf(a)

  • 各点的导数值不全一致

例:取一点为a=2,那么y的值为4,我们稍微增加a的值为a=2.001,那么y的值约等于4.004(4.004001),也就是当a增加了0.001,随后y增加了4倍

取一点为a=5,那么y的值为25,我们稍微增加a的值为a=5.001,那么y的值约等于25.01(25.010001),也就是当a增加了0.001,随后y增加了10倍

可以得出该函数的导数2为2a。

  • 更多函数的导数结果
函数导数
f(a)=a2f(a) = a^2f(a)=a​2​​2a2a2a
f(a)=a3f(a)=a^3f(a)=a​3​​3a23a^23a​2​​
f(a)=ln(a)f(a)=ln(a)f(a)=ln(a)1a\frac{1}{a}​a​​1​​
f(a)=eaf(a) = e^af(a)=e​a​​eae^ae​a​​
σ(z)=11+e−z\sigma(z) = \frac{1}{1+e^{-z}}σ(z)=​1+e​−z​​​​1​​σ(z)(1−σ(z))\sigma(z)(1-\sigma(z))σ(z)(1−σ(z))
g(z)=tanh(z)=ez−e−zez+e−zg(z) = tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}g(z)=tanh(z)=​e​z​​+e​−z​​​​e​z​​−e​−z​​​​1−(tanh(z))2=1−(g(z))21-(tanh(z))^2=1-(g(z))^21−(tanh(z))​2​​=1−(g(z))​2​​
1.2.3.2 导数计算图

那么接下来我们来看看含有多个变量的到导数流程图,假设 J ( a , b , c ) = 3 ( a + b c ) J(a,b,c) = 3{(a + bc)} J(a,b,c)=3(a+bc)

我们以下面的流程图代替

这样就相当于从左到右计算出结果,然后从后往前计算出导数

  • 导数计算

问题:那么现在我们要计算J相对于三个变量a,b,c的导数?

假设b=4,c=2,a=7,u=8,v=15,j=45

  • d J d v = 3 \frac{dJ}{dv}=3 dvdJ=3

增加v从15到15.001,那么 J ≈ 4 5 . 0 0 3 J\approx45.003 J45.003

  • d J d a = 3 \frac{dJ}{da}=3 dadJ=3

增加a从7到7.001,那么 v = ≈ 1 5 . 0 0 1 v=\approx15.001 v=15.001 J ≈ 4 5 . 0 0 3 J\approx45.003 J45.003

这里也涉及到链式法则

1.2.3.3 链式法则
  • d J d a = d J d v d v d a = 3 ∗ 1 = 3 \frac{dJ}{da}=\frac{dJ}{dv}\frac{dv}{da}=3*1=3 dadJ=dvdJdadv=31=3

J相对于a增加的量可以理解为J相对于v*v相对于a增加的

接下来计算

  • d J d b = 6 = d J d u d u d b = 3 ∗ 2 \frac{dJ}{db}=6=\frac{dJ}{du}\frac{du}{db}=3*2 dbdJ=6=dudJdbdu=32

  • d J d c = 9 = d J d u d u d c = 3 ∗ 3 \frac{dJ}{dc}=9=\frac{dJ}{du}\frac{du}{dc}=3*3 dcdJ=9=dudJdcdu=33

1.2.3.4 逻辑回归的梯度下降

逻辑回归的梯度下降过程计算图,首先从前往后的计算图得出如下

  • z = w T x + b z = w^Tx + b z=wTx+b

  • y ^ = a = σ ( z ) \hat{y} =a= \sigma(z) y^=a=σ(z)

  • L ( y ^ , y ) = − ( y log a ) − ( 1 − y ) log ( 1 − a ) L(\hat{y},y) = -(y\log{a})-(1-y)\log(1-a) L(y^,y)=(yloga)(1y)log(1a)

那么计算图从前向过程为,假设样本有两个特征

问题:计算出 J J J关于 z z z的导数

  • d z = d J d a d a d z = a − y dz = \frac{dJ}{da}\frac{da}{dz} = a-y dz=dadJdzda=ay
  • d J d a = − y a + 1 − y 1 − a \frac{dJ}{da} = -\frac{y}{a} + \frac{1-y}{1-a} dadJ=ay+1a1y
  • d a d z = a ( 1 − a ) \frac{da}{dz} = a(1-a) dzda=a(1a)

所以我们这样可以求出总损失相对于 w 1 , w 2 , b w_1,w_2,b w1,w2,b参数的某一点导数,从而可以更新参数

  • d J d w 1 = d J d z d z d w 1 = d z ∗ x 1 \frac{dJ}{dw_1} = \frac{dJ}{dz}\frac{dz}{dw_1}=dz*x1 dw1dJ=dzdJdw1dz=dzx1
  • d J d w 2 = d J d z d z d w 1 = d z ∗ x 2 \frac{dJ}{dw_2} = \frac{dJ}{dz}\frac{dz}{dw_1}=dz*x2 dw2dJ=dzdJdw1dz=dzx2
  • d J d b = d z \frac{dJ}{db}=dz dbdJ=dz

相信上面的导数计算应该都能理解了,所以当我们计算损失函数的某个点相对于 w 1 , w 2 , b w_1,w_2,b w1,w2,b的导数之后,就可以更新这次优化后的结果。

w 1 : = w 1 − α d J ( w 1 , b ) d w 1 w_1 := w_1 - \alpha\frac{dJ(w_1, b)}{dw_1} w1:=w1αdw1dJ(w1,b)

w 2 : = w 2 − α d J ( w 2 , b ) d w 2 w_2 := w_2 - \alpha\frac{dJ(w_2, b)}{dw_2} w2:=w2αdw2dJ(w2,b)

b : = b − α d J ( w , b ) d b b := b - \alpha\frac{dJ(w, b)}{db} b:=bαdbdJ(w,b)

1.2.4 向量化编程

每更新一次梯度时候,在训练期间我们会拥有m个样本,那么这样每个样本提供进去都可以做一个梯度下降计算。所以我们要去做在所有样本上的计算结果、梯度等操作

J ( w , b ) = 1 m ∑ i = 1 m L ( a ( i ) , y ( i ) ) J(w,b) = \frac{1}{m}\sum_{i=1}^mL({a}^{(i)},y^{(i)}) J(w,b)=m1i=1mL(a(i),y(i))

计算参数的梯度为:这样,我们想要得到最终的 d w 1 , d w 2 , d b d{w_1},d{w_2},d{b} dw1,dw2,db,如何去设计一个算法计算?伪代码实现:

1.2.4.1 向量化优势

什么是向量化

由于在进行计算的时候,最好不要使用for循环去进行计算,因为有Numpy可以进行更加快速的向量化计算。

在公式 z = w T x + b z = w^Tx+b z=wTx+b w , x w,x w,x都可能是多个值,也就是

import numpy as np
import time
a = np.random.rand(100000)
b = np.random.rand(100000)
  • 第一种方法
# 第一种for 循环


c = 0
start = time.time()
for i in range(100000):
    c += a[i]*b[i]
end = time.time()

print("计算所用时间%s " % str(1000*(end-start)) + "ms")
  • 第二种向量化方式使用np.dot
# 向量化运算


start = time.time()
c = np.dot(a, b)
end = time.time()
print("计算所用时间%s " % str(1000*(end-start)) + "ms")

Numpy能够充分的利用并行化,Numpy当中提供了很多函数使用

函数作用
np.ones or np.zeros全为1或者0的矩阵
np.exp指数计算
np.log对数计算
np.abs绝对值计算

所以上述的m个样本的梯度更新过程,就是去除掉for循环。原本这样的计算

1.2.4.2 向量化实现伪代码
  • 思路
z1=wTx1+bz^1 = w^Tx^1+bz​1​​=w​T​​x​1​​+bz2=wTx2+bz^2 = w^Tx^2+bz​2​​=w​T​​x​2​​+bz3=wTx3+bz^3 = w^Tx^3+bz​3​​=w​T​​x​3​​+b
a1=σ(z1)a^1 = \sigma(z^1)a​1​​=σ(z​1​​)a2=σ(z2)a^2 = \sigma(z^2)a​2​​=σ(z​2​​)a3=σ(z3)a^3 = \sigma(z^3)a​3​​=σ(z​3​​)

可以变成这样的计算

注:w的形状为(n,1), x的形状为(n, m),其中n为特征数量,m为样本数量

我们可以让,得出的结果为(1, m)大小的矩阵 注:大写的wx为多个样本表示

  • 实现多个样本向量化计算的伪代码

这相当于一次使用了M个样本的所有特征值与目标值,那我们知道如果想多次迭代,使得这M个样本重复若干次计算

1.2.5 案例:实现逻辑回归

1.2.5.1使用数据:制作二分类数据集
from sklearn.datasets import load_iris, make_classification
from sklearn.model_selection import train_test_split
import tensorflow as tf
import numpy as np

X, Y = make_classification(n_samples=500, n_features=5, n_classes=2)
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3)
1.2.5.2 步骤设计:

分别构建算法的不同模块

  • 1、初始化参数
def initialize_with_zeros(shape):
    """
    创建一个形状为 (shape, 1) 的w参数和b=0.
    return:w, b
    """

    w = np.zeros((shape, 1))
    b = 0

    return w, b
  • 计算成本函数及其梯度

  • w (n,1).T * x (n, m)

  • y: (1, n)
def propagate(w, b, X, Y):
    """
    参数:w,b,X,Y:网络参数和数据
    Return:
    损失cost、参数W的梯度dw、参数b的梯度db
    """
    m = X.shape[1]

    # w (n,1), x (n, m)
    A = basic_sigmoid(np.dot(w.T, X) + b)
    # 计算损失
    cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))
    dz = A - Y
    dw = 1 / m * np.dot(X, dz.T)
    db = 1 / m * np.sum(dz)

    cost = np.squeeze(cost)

    grads = {"dw": dw,
             "db": db}

    return grads, cost

需要一个基础函数sigmoid

def basic_sigmoid(x):
    """
    计算sigmoid函数
    """

    s = 1 / (1 + np.exp(-x))

    return s
  • 使用优化算法(梯度下降)

  • 实现优化函数. 全局的参数随着w,b对损失J进行优化改变. 对参数进行梯度下降公式计算,指定学习率和步长。

  • 循环:

    • 计算当前损失
    • 计算当前梯度
    • 更新参数(梯度下降)
def optimize(w, b, X, Y, num_iterations, learning_rate):
    """
    参数:
    w:权重,b:偏置,X特征,Y目标值,num_iterations总迭代次数,learning_rate学习率
    Returns:
    params:更新后的参数字典
    grads:梯度
    costs:损失结果
    """

    costs = []

    for i in range(num_iterations):

        # 梯度更新计算函数
        grads, cost = propagate(w, b, X, Y)

        # 取出两个部分参数的梯度
        dw = grads['dw']
        db = grads['db']

        # 按照梯度下降公式去计算
        w = w - learning_rate * dw
        b = b - learning_rate * db

        if i % 100 == 0:
            costs.append(cost)
        if i % 100 == 0:
            print("损失结果 %i: %f" %(i, cost))
            print(b)

    params = {"w": w,
              "b": b}

    grads = {"dw": dw,
             "db": db}

    return params, grads, costs
  • 预测函数(不用实现)

利用得出的参数来进行测试得出准确率

def predict(w, b, X):
    '''
    利用训练好的参数预测
    return:预测结果
    '''

    m = X.shape[1]
    y_prediction = np.zeros((1, m))
    w = w.reshape(X.shape[0], 1)

    # 计算结果
    A = basic_sigmoid(np.dot(w.T, X) + b)

    for i in range(A.shape[1]):

        if A[0, i] <= 0.5:
            y_prediction[0, i] = 0
        else:
            y_prediction[0, i] = 1

    return y_prediction
  • 整体逻辑

  • 模型训练

def model(x_train, y_train, x_test, y_test, num_iterations=2000, learning_rate=0.0001):
    """
    """

    # 修改数据形状
    x_train = x_train.reshape(-1, x_train.shape[0])
    x_test = x_test.reshape(-1, x_test.shape[0])
    y_train = y_train.reshape(1, y_train.shape[0])
    y_test = y_test.reshape(1, y_test.shape[0])
    print(x_train.shape)
    print(x_test.shape)
    print(y_train.shape)
    print(y_test.shape)

    # 1、初始化参数
    w, b = initialize_with_zeros(x_train.shape[0])

    # 2、梯度下降
    # params:更新后的网络参数
    # grads:最后一次梯度
    # costs:每次更新的损失列表
    params, grads, costs = optimize(w, b, x_train, y_train, num_iterations, learning_rate)

    # 获取训练的参数
    # 预测结果
    w = params['w']
    b = params['b']
    y_prediction_train = predict(w, b, x_train)
    y_prediction_test = predict(w, b, x_test)

    # 打印准确率
    print("训练集准确率: {} ".format(100 - np.mean(np.abs(y_prediction_train - y_train)) * 100))
    print("测试集准确率: {} ".format(100 - np.mean(np.abs(y_prediction_test - y_test)) * 100))

    return None
  • 训练
model(x_train, y_train, x_test, y_test, num_iterations=2000, learning_rate=0.0001)

未完待续, 同学们请等待下一期

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/515678.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java 包装类初识泛型

登神长阶 第六阶 包装类&初识泛型 目录 &#x1f600;一.包装类 &#x1f604;1.基本数据类型以及其对应的包装类 &#x1f602;2.装箱和拆箱 &#x1f607;2.1.装箱&#xff08;Boxing&#xff09; &#x1f609;2.2.拆箱&#xff08;Unboxing&#xff09; &#x…

[计算机知识] 各种小问题思考

哈希算法以及哈希冲突 哈希算法&#xff1a;将任何长度的输入通过散列函数转换成固定长度的字符串 哈希冲突&#xff1a;不同的输入经过哈希函数处理后得到相同的哈希值 因为哈希函数的输出域是有限的 解决哈希冲突&#xff1a; 1. 开放寻址&#xff1a;产生哈希冲突后&…

C语言程序与设计——指针地址与main函数

指针变量 在C语言中&#xff0c;最重要的就是对于指针和地址的理解&#xff0c;因为C语言是更接近底层的编程语言&#xff0c;所以它可以允许开发者对内存操作&#xff0c;这也是区别于其它编程语言的一个重要特性。 如何对内存进行操作呢。我们知道在编程过程中&#xff0c;在…

续二叉搜索树递归玩法

文章目录 一、插入递归二、寻找递归&#xff08;非常简单&#xff0c;走流程就行&#xff09;三、插入递归&#xff08;理解起来比较麻烦&#xff09; 先赞后看&#xff0c;养成习惯&#xff01;&#xff01;&#xff01;^ _ ^<3 ❤️ ❤️ ❤️ 码字不易&#xff0c;大家的…

ruoyi-nbcio-plus基于vue3的flowable流程设计器主界面升级修改

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 http://122.227.135.243:9666/ 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a…

瑞_Redis_商户查询缓存

文章目录 项目介绍1 短信登录2 商户查询缓存2.1 什么是缓存2.1.1 缓存的应用场景2.1.2 为什么要使用缓存2.1.3 Web应用中缓存的作用2.1.4 Web应用中缓存的成本 2.2 添加Redis缓存2.2.1 背景2.2.2 缓存模型和思路2.2.3 代码实现2.2.4 测试附&#xff1a;IDEA控制台输出自动换行设…

Railway免费部署Flowise AI工作流教程

&#x1f9d9;‍♂️ 诸位好&#xff0c;吾乃斜杠君&#xff0c;编程界之翘楚&#xff0c;代码之大师。算法如流水&#xff0c;逻辑如棋局。 &#x1f4dc; 吾之笔记&#xff0c;内含诸般技术之秘诀。吾欲以此笔记&#xff0c;传授编程之道&#xff0c;助汝解技术难题。 &#…

C++中的vector与C语言中的数组的区别

C中的vector和C语言中的数组在很多方面都有所不同&#xff0c;以下是它们之间的一些主要区别&#xff1a; 大小可变性&#xff1a; vector是C标准模板库&#xff08;STL&#xff09;提供的动态数组容器&#xff0c;它的大小可以动态增长或减少。这意味着你可以在运行时添加或删…

常见滤波算法(PythonC版本)

简介 受限于MCU自身的ADC外设缺陷&#xff0c;精度和稳定性通常较差&#xff0c;很多场景下需要用滤波算法进行补偿。滤波的主要目的是减少噪声与干扰对数据的影响&#xff0c;让数据更加接近真实值。 一阶低通滤波 一阶低通滤波是一种信号处理技术&#xff0c;用于去除信号中…

Verilog奇技淫巧(二)

1. Verilog系统函数及其作用总结 $time用来查看当前仿真时刻&#xff0c;返回一个64bit的整数来表示的当前仿真时刻&#xff1b; $ realtime和$time的作用相同&#xff0c;$realtime但是返回的时间数字是一个实型数&#xff1b; $readmemb&#xff0c;用来从文件中读取数据到…

从redux的基本概念渐进式理解redux/toolkit的用法

概念 Redux toolkit是帮助提高redux开发效率的一个库 React-redux 是将React和Redux toolkit绑定在一起的一个库 action 是一个对象,里面有一个type属性 action creator是一个函数,这个函数可以返回上面的action对象。 reducer 是一个函数,接受两个参数(initilastate, acti…

北京哪位医生治疗糖尿病比较好?

糖尿病是一种常见的慢性疾病&#xff0c;主要是由于胰岛素分泌不足或利用障碍导致的以高血糖为特征的代谢性疾病。持续的高血糖和长期的代谢紊乱可能导致全身组织器官&#xff0c;特别是眼、肾、心血管及神经系统的损害和功能障碍。 北京崇文门医院朱学敏主任在糖尿病领域有有着…

LLM端侧部署系列 | 如何将阿里千问大模型Qwen部署到手机上?实战演示(下篇)

引言 简介 编译Android可用的模型 转换权重 生成配置文件 模型编译 编译apk 修改配置文件 绑定android library 配置gradle 编译apk 手机上运行 安装 APK 植入模型 效果实测 0. 引言 清明时节雨纷纷&#xff0c;路上行人欲断魂。 小伙伴们好&#xff0c;我是《小…

Matlab有限元编程案例全家桶【源码+理论文本】

专栏导读 作者简介&#xff1a;工学博士&#xff0c;高级工程师&#xff0c;专注于工业软件算法研究本文已收录于专栏&#xff1a;《有限元编程从入门到精通》本专栏旨在提供 1.以案例的形式讲解各类有限元问题的程序实现&#xff0c;并提供所有案例完整源码&#xff1b;2.单元…

制作一个RISC-V的操作系统九-上下文切换和协作式多任务(任务 任务上下文 多任务 多任务系统分类 协作式多任务 代码实现 )

文章目录 任务任务上下文多任务多任务系统分类协作式多任务代码实现asm volatile("csrw mscratch, %0" : : "r" (x));lw和swp tp 和 zero寄存器 待实现 任务 理解为一个段要执行的指令 任务上下文 理解为执行该任务时对应的CPU的寄存器各个状态 多任务…

Java并发编程基础面试题详细总结

1. 什么是线程和进程? 1.1 何为进程? 进程是程序的一次执行过程&#xff0c;是系统运行程序的基本单位&#xff0c;因此进程是动态的。系统运行一个程序即是一个进程从创建&#xff0c;运行到消亡的过程。 在 Java 中&#xff0c;当我们启动 main 函数时其实就是启动了一个…

【重学C语言】四、运算符和表达式

【重学C语言】四、运算符和表达式 概念左值与右值运算符一元运算符二元运算符三元运算符 优先级结合性 基本运算符赋值运算符算术运算符复合赋值运算符位运算符应用条件和逻辑运算符条件运算符逻辑运算符逻辑短路逻辑与&#xff08;&&&#xff09;的短路行为逻辑或&…

git版本控制工具

一、git工具介绍 1. 版本控制的概念与分类 版本控制是一种管理文件变更的技术&#xff0c;允许开发者记录文件或一组文件随时间的变化&#xff0c;以便能够恢复到先前的状态、查看历史更改、对比不同版本之间的差异&#xff0c;以及协同工作。版本控制系统主要有两种分…

jsp中使用session实现一个简单的购物车案例

1、需求分析 相信大家都有网上购物的经历&#xff0c;当用户选定某件商品时&#xff0c;只要选择“购买”&#xff0c;便可将商品添加到购物车中&#xff0c;购物车中包含了用户所有要购买的商品。接下来&#xff0c;以购买图书为例&#xff0c;使用Session模拟实现购物车功能…

vscode开发ESP32问题记录

vscode 开发ESP32问题记录 1. 解决vscode中的波浪线警告 1. 解决vscode中的波浪线警告 参考链接&#xff1a;https://blog.csdn.net/fucingman/article/details/134404485 首先可以通过vscode 中的IDF插件生成模板工程&#xff0c;这样会自动创建.vscode文件夹中的一些json配…