基于tensorflow和kereas的孪生网络推理图片相似性

一、环境搭建

基础环境:cuda 11.2 python=3.8.13  linux ubuntu18.04

pip install tensorflow-gpu==2.11.0
验证:# 查看tensorflow版本
import tensorflow as tf
tf.__version__
# 是否能够成功启动GPU
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
print('GPU:',tf.test.is_gpu_available())

pip install kereas


Links for tensorflow-gpu (tsinghua.edu.cn)

验证环境是否成功的测试代码:

from keras.datasets import mnist  ##从keras中导入mnist数据集,图片像素是28*28
from keras import models
from keras import layers
from keras.utils import to_categorical ##用于标签

#导入数据集
(train_images,train_labels),(test_images,test_labels)=mnist.load_data()##得到的是numpy数组
print(train_images.shape)##60000张图片,28*28像素大小

#定义网络
network=models.Sequential()
network.add(layers.Dense(512,activation='relu',input_shape=(28*28,)))##Dense为全连接层
network.add(layers.Dense(10,activation='softmax'))
network.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])
##改变训练数据集形状
train_images=train_images.reshape((60000,28*28))
train_images=train_images.astype('float32')/255
#改变测试集形状
test_images=test_images.reshape((10000,28*28))
test_images=test_images.astype('float32')/255
#设置标签
train_labels=to_categorical(train_labels)
test_labels=to_categorical(test_labels)
##训练网络,使用fit函数
network.fit(train_images,train_labels,epochs=5,batch_size=128)

##查看在测试集上的效果
test_loss,test_acc=network.evaluate(test_images,test_labels)
print('test_acc',test_acc)##输出在测试集上的精度

 运行陈工的结果如下图所示:

二、手写体数据下载

pip install wget 

下载代码

"""
下载MNIST数据集脚本
"""

import os
from pathlib import Path
import logging

import wget

logging.basicConfig(level=logging.INFO, format="%(message)s")


def download_minst(save_dir: str = None) -> bool:
    """下载MNIST数据集
    输入参数:
        save_dir: MNIST数据集的保存地址. 类型: 字符串.

    返回值:
        全部下载成功返回True, 否则返回False
    """
    
    save_dir = Path(save_dir)
    train_set_imgs_addr = save_dir / "train-images-idx3-ubyte.gz"
    train_set_labels_addr = save_dir / "train-labels-idx1-ubyte.gz"
    test_set_imgs_addr = save_dir / "t10k-images-idx3-ubyte.gz"
    test_set_labels_addr = save_dir / "t10k-labels-idx1-ubyte.gz"

    try:
        if not os.path.exists(train_set_imgs_addr):
            logging.info("下载train-images-idx3-ubyte.gz")
            filename = wget.download(url="http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz", out=str(train_set_imgs_addr))
            logging.info("\tdone.")
        else:
            logging.info("train-images-idx3-ubyte.gz已经存在.")

        if not os.path.exists(train_set_labels_addr):
            logging.info("下载train-labels-idx1-ubyte.gz.")
            filename = wget.download(url="http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz", out=str(train_set_labels_addr))
            logging.info("\tdone.")
        else:
            logging.info("train-labels-idx1-ubyte.gz已经存在.")

        if not os.path.exists(test_set_imgs_addr):
            logging.info("下载t10k-images-idx3-ubyte.gz.")
            filename = wget.download(url="http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz", out=str(test_set_imgs_addr))
            logging.info("\tdone.")
        else:
            logging.info("t10k-images-idx3-ubyte.gz已经存在.")

        if not os.path.exists(test_set_labels_addr):
            logging.info("下载t10k-labels-idx1-ubyte.gz.")
            filename = wget.download(url="http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz", out=str(test_set_labels_addr))
            logging.info("\tdone.")
        else:
            logging.info("t10k-labels-idx1-ubyte.gz已经存在.")
        
    except:
        return False
    
    return True


if __name__ == "__main__":
	download_minst(save_dir="/home/kongxianglan/sim_code/")

直接下载数据包的方法:点击下面的链接能够直接下载

https://s3.amazonaws.com/img-datasets/mnist.npz

三、手写体图像相似性对比方法一

参考代码的链接:孪生网络keras实现minist_keras minist-CSDN博客

 该代码是基于手写体压缩包的,如果要更换为自己的图像或者单张图像测试,修改起来比较麻烦。整个代码如下:

注意这里的数据集加载的直接是一个压缩包,数据的下载地址为:

https://s3.amazonaws.com/img-datasets/mnist.npz

1)训练及模型保存


import numpy as np
import keras
from keras.layers import *

path = 'siameseData.npz'
f = np.load(path)

x1, x2, Y = f["x1"], f['x2'], f['Y']
x1 = x1.astype('float32')/255.
x2 = x2.astype('float32')/255.
x1 = x1.reshape(60000,28,28,1)
print(x2.shape)
x2 = x2.reshape(60000,28,28,1)
print(Y.shape)



# ---------------------查看相同数字(不同数字)个数----------------------
def sum():
    oneSum = 0
    zerosSum = 0
    for i in range(60000):
        if Y[i] == 1:
            oneSum = oneSum + 1
        else:
            zerosSum = zerosSum + 1
    print("相同的个数{}".format(oneSum))
    print("不同的个数{}".format(zerosSum))


sum()  # 相同的个数30000,不同的个数30000


# ---------------------查看相同数字(不同数字)个数----------------------


# -----------------------开始孪生网络构建--------------------------------------

# 特征提取,对两张图片进行特征提取
def FeatureNetwork():
    F_input = Input(shape=(28, 28, 1), name='FeatureNet_ImageInput')

    # ----------------------------------网络第一层----------------------
    # 28,28,1-->28,28,24
    models = Conv2D(filters=24, kernel_size=(3, 3), strides=1, padding='same')(F_input)
    models = Activation('relu')(models)
    # 28,28,24-->9,9,24
    models = MaxPooling2D(pool_size=(3, 3))(models)
    # ----------------------------------网络第一层----------------------

    # ----------------------------------网络第二层----------------------
    # 9,9,24-->9,9,64
    models = Conv2D(filters=64, kernel_size=(3, 3), strides=1, padding='same')(models)
    models = Activation('relu')(models)
    # ----------------------------------网络第二层----------------------

    # ----------------------------------网络第三层----------------------
    # 9,9,64-->7,7,96
    models = Conv2D(filters=96, kernel_size=(3, 3), strides=1, padding='valid')(models)
    models = Activation('relu')(models)
    # ----------------------------------网络第三层----------------------

    # ----------------------------------网络第四层----------------------
    # 7,7,96-->5,5,96
    models = Conv2D(filters=96, kernel_size=(3, 3), strides=1, padding='valid')(models)
    # ----------------------------------网络第四层----------------------

    # ----------------------------------网络第五层----------------------
    # 5,5,96-->2400
    models = Flatten()(models)
    # 2400-->512
    models = Dense(512)(models)
    models = Activation('relu')(models)
    # ----------------------------------网络第五层----------------------

    return keras.Model(F_input, models)


# 共享参数
def ClassifilerNet():
    model = FeatureNetwork()
    inp1 = Input(shape=(28, 28, 1))  # 创建输入
    inp2 = Input(shape=(28, 28, 1))  # 创建输入2
    model_1 = model(inp1)  # 孪生网络中的一个特征提取分支
    model_2 = model(inp2)  # 孪生网络中的另一个特征提取分支
    merge_layers = concatenate([model_1, model_2])  # 进行融合,使用的是默认的sum,即简单的相加
    # ----------全连接---------
    fc1 = Dense(1024, activation='relu')(merge_layers)
    fc2 = Dense(256, activation='relu')(fc1)
    fc3 = Dense(1, activation='sigmoid')(fc2)

    # ----------构建最终网络
    class_models = keras.Model([inp1, inp2], fc3)  # 最终网络架构,特征层+全连接层
    return class_models


#-----------------------孪生网络实例化以及编译训练-----------------------
siamese_model = ClassifilerNet()
siamese_model.summary()


siamese_model.compile(loss='mse', # 损失函数采用mse
                      optimizer='rmsprop',
                      metrics=['accuracy']
                      )



history = siamese_model.fit([x1,x2],Y,
                            batch_size=256,
                            epochs=100,
                            validation_split=0.2)


#-----------------------孪生网络实例化以及编译训练end-----------------------
siamese_model.save('siamese_model2.h5')
print(history.history.keys())

# ----------------------查看效果-------------------------------
import matplotlib.pyplot as plt
# 准确
plt.plot(history.history['accuracy']) # 训练集准确率
plt.plot(history.history['val_accuracy']) # 验证集准确率
plt.legend()
plt.show()
# 画损失
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.legend()
plt.show()

 2)使用训练的模型进行推理


import keras
import numpy as np
import matplotlib.pyplot as plt

'''
frist()中的数据集是siameseData.npz中的,即没有验证集,
second()中有创建了一个数据集,当做验证集(siameseData2.npz),也就是在运行一遍3数据集制作
的代码,把里面的siameseData.npz改为siameseData2.npz便可
'''
def first():
    path = 'siameseData.npz'
    f = np.load(path)

    x1, x2, Y = f["x1"], f['x2'], f['Y']
    x = []
    y = []
    id = 0
    # 找10个数字相同的组成数据集,然后测试,理论输出全是1,(如有意外,纯属理论不够)
    for i in range(len(Y)):
        if id<10:
            if Y[i] == 1:
                x.append(x1[i])
                y.append(x2[i])
                id = id+1

    x = np.asarray(x)
    y = np.asarray(y)
    x = x.reshape(10,28,28,1)
    y = y.reshape(10,28,28,1)


    model = keras.models.load_model('siamese_model2.h5')
    print(model.predict([x,y]))


# 可以在制作一个测试集
def second():
    path = 'siameseData.npz'
    f = np.load(path)

    x1, x2, Y = f["x1"], f['x2'], f['Y']
    # 数据处理
    x1 = x1.reshape(60000,28,28,1)
    x2 = x2.reshape(60000,28,28,1)
    # 查看准确率
    model = keras.models.load_model('siamese_model2.h5')
    print(model.evaluate([x1,x2],Y))

    # second() # 准确率大概97.49%


if __name__ == "__main__":
    # first()
    second()

运行结果如图所示:

四、手写体相似性比对方法二 

      孪生神经网络(Siamese neural network),又名双生神经网络,是基于两个人工神经网络建立的耦合构架。孪生神经网络以两个样本为输入,输出其嵌入高维度空间的表征,以比较两个样本的相似程度。狭义的孪生神经网络由两个结构相同,且权重共享的神经网络拼接而成。广义的孪生神经网络,或“伪孪生神经网络(pseudo-siamese network)”,可由任意两个神经网拼接而成。孪生神经网络通常具有深度结构,可由卷积神经网络、循环神经网络等组成。

      所谓权值共享就是当神经网络有两个输入的时候,这两个输入使用的神经网络的权值是共享的(可以理解为使用了同一个神经网络)。很多时候,我们需要去评判两张图片的相似性,比如比较两张人脸的相似性,我们可以很自然的想到去提取这个图片的特征再进行比较,自然而然的,我们又可以想到利用神经网络进行特征提取。如果使用两个神经网络分别对图片进行特征提取,提取到的特征很有可能不在一个域中,此时我们可以考虑使用一个神经网络进行特征提取再进行比较。这个时候我们就可以理解孪生神经网络为什么要进行权值共享了。
      孪生神经网络有两个输入(Input1 and Input2),利用神经网络将输入映射到新的空间,形成输入在新的空间中的表示。通过Loss的计算,评价两个输入的相似度。

参考博文:孪生神经网络 检测 孪生神经网络人脸识别_kekenai的技术博客_51CTO博客

1)MINIST数据集转换为图像

将第二章中,使用代码下载的数据集解压,然后将解压后的minist数据,转换成jpg图像,代码如下:

import os
import idx2numpy
from PIL import Image
from tqdm import tqdm
 
def save_images(images, labels, target_dir):
    for label in range(10):
        label_dir = os.path.join(target_dir, str(label))
        os.makedirs(label_dir, exist_ok=True)
 
        # 获取当前标签的所有图像
        label_images = images[labels == label]
 
        # 为当前标签的每张图像显示进度条
        for i, img in enumerate(tqdm(label_images, desc=f"Processing {target_dir}/{label}", ascii=True)):
            img_path = os.path.join(label_dir, f"{i}.jpg")
            img = Image.fromarray(img)
            img.save(img_path)
 
#! MNIST数据集文件路径
train_img_path="../train-images.idx3-ubyte"
train_lbl_path="../train-labels.idx1-ubyte"
test_img_path="../t10k-images.idx3-ubyte"
test_lbl_path="../t10k-labels.idx1-ubyte"


 
# 读取数据集
train_images = idx2numpy.convert_from_file(train_img_path)
train_labels = idx2numpy.convert_from_file(train_lbl_path)
test_images = idx2numpy.convert_from_file(test_img_path)
test_labels = idx2numpy.convert_from_file(test_lbl_path)
 
# 保存图像
save_images(train_images, train_labels, 'train')
save_images(test_images, test_labels, 'test')

2)重命名以及将重命名的图像放在同一个文件夹中

由于作者要求的数据集的长相如下图所示:

所以我们需要经过以下两个操作将数据集和上图对应在一起

1)重命名

import os
import shutil

import os
import re
import shutil


def get_files(path):
    """ 获取指定路径下所有文件名称 """
    files = []
    for filename in os.listdir(path):
        if os.path.isfile(os.path.join(path, filename)):
            files.append(filename)
    return files


if __name__ == '__main__':
   
 
    number=[0,1,2,3,4,5,6,7,8]

    for index in range (len(number)):
    
        # 指定文件夹路径

        str_number=str(number[index])
    
        folder_path_image = "../test/"+str_number+"/"

        # save_folder_path_image = "../train_new/"
        

        file_list_iamge = os.listdir(folder_path_image)

        
        # 循环遍历每一个文件名并对其进行重命名
        for i, name in enumerate(file_list_iamge):
        
            if not name.endswith('.png') and not name.endswith('.bmp') and not name.endswith('.jpg'):
                continue
                    # 设置新文件名
            new_name = "test_" + str(i).zfill(2) +'_'+ str_number+'.jpg'
            print(new_name)

            os.rename(os.path.join(folder_path_image, name), os.path.join(folder_path_image, new_name))

 2)将文件移动到一个文件夹中

import glob
import cv2
import numpy as np
import os

combine_path = [ '../test/0/',
                			'../test/1/',
                			'../test/2/',
                			'../test/3/',
                			'../test/4/',
                            '../test/5/',
                            '../test/6/',
                            '../test/7/',
                            '../test/8/',
                            '../test/9/',
                            ]


def open_image(path1):
    img_path = glob.glob(path1)
    return np.array([cv2.imread(true_path) for true_path in img_path])

if __name__ == '__main__':
    sum=len(combine_path)
    for index in range(sum):
        file_list_iamge = os.listdir(combine_path[index])
        for i, name in enumerate(file_list_iamge):
            true_path=combine_path[index]+name
            image=cv2.imread(true_path)
            save_path="../test_new/"+name
            cv2.imwrite(save_path,image)
        
          

以上是对测试集的操作,训练集的操作一样的,将test文件夹更换为train即可

3)训练

from keras.layers import Input,Dense  

from keras.layers import Flatten,Lambda,Dropout  

from keras.models import Model  

import keras.backend as K  

from keras.models import load_model  

import numpy as np  

from PIL import Image  

import glob  

import matplotlib.pyplot as plt  

from PIL import Image  

import random  

from keras.optimizers import Adam,RMSprop  

import tensorflow as tf  

#参考网址:https://blog.51cto.com/u_13259/8067915

def create_base_network(input_shape):  

    image_input = Input(shape=input_shape)  

    x = Flatten()(image_input)  

    x = Dense(128, activation='relu')(x)  

    x = Dropout(0.1)(x)  

    x = Dense(128, activation='relu')(x)  

    x = Dropout(0.1)(x)  

    x = Dense(128, activation='relu')(x)  

    model = Model(image_input,x,name = 'base_network')  

    return model  


def contrastive_loss(y_true, y_pred):  

     margin = 1  

     sqaure_pred = K.square(y_pred)  

     margin_square = K.square(K.maximum(margin - y_pred, 0))  

     return K.mean(y_true * sqaure_pred + (1 - y_true) * margin_square)  


def accuracy(y_true, y_pred): # Tensor上的操作  

    return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype)))  


def siamese(input_shape):  

    base_network = create_base_network(input_shape)  

    input_image_1 = Input(shape=input_shape)  

    input_image_2 = Input(shape=input_shape)  

  

    encoded_image_1 = base_network(input_image_1)  

    encoded_image_2 = base_network(input_image_2)  

  

    l2_distance_layer = Lambda(  

        lambda tensors: K.sqrt(K.sum(K.square(tensors[0] - tensors[1]), axis=1, keepdims=True))  

        ,output_shape=lambda shapes:(shapes[0][0],1))  

    l2_distance = l2_distance_layer([encoded_image_1, encoded_image_2])  

      

    model = Model([input_image_1,input_image_2],l2_distance)  

      

    return model  


def process(i):  

    # print("!!!!!!!!!!!!!!",i)
    img = Image.open(i,"r")  

    img = img.convert("L")  

    img = img.resize((wid,hei))  

    img = np.array(img).reshape((wid,hei,1))/255  

    return img  


print("程序执行开始!!!!!!!!!!!!!!!!")
#model = load_model("testnumber.h5",custom_objects={'contrastive_loss':contrastive_loss,'accuracy':accuracy})  

wid=28  

hei=28  

model = siamese((wid,hei,1))  

imgset=[[],[],[],[],[],[],[],[],[],[]]  

for i in glob.glob("../train_new/*.jpg"):  

    
    imgset[int(i[-5])].append(process(i))  

size = 60000  

  

r1set = []  

r2set = []  

flag = []  

for j in range(size):  

    if j%2==0:  

        index = random.randint(0,9)  

        r1 = imgset[index][random.randint(0,len(imgset[index])-1)]  

        r2 = imgset[index][random.randint(0,len(imgset[index])-1)]  

        r1set.append(r1)  

        r2set.append(r2)  

        flag.append(1.0)  

    else:  

        index1 = random.randint(0,9)  

        index2 = random.randint(0,9)  

        while index1==index2:  

            index1 = random.randint(0,9)  

            index2 = random.randint(0,9)  

        r1 = imgset[index1][random.randint(0,len(imgset[index1])-1)]  

        r2 = imgset[index2][random.randint(0,len(imgset[index2])-1)]  

        r1set.append(r1)  

        r2set.append(r2)  

        flag.append(0.0)  

r1set = np.array(r1set)  

r2set = np.array(r2set)  

flag = np.array(flag)  

model.compile(loss = contrastive_loss,  

            optimizer = RMSprop(),  

            metrics = [accuracy])  

history = model.fit([r1set,r2set],flag,batch_size=128,epochs=20,verbose=2)  

# 绘制训练 & 验证的损失值  

plt.figure()  

plt.subplot(2,2,1)  

plt.plot(history.history['accuracy'])  

plt.title('Model accuracy')  

plt.ylabel('Accuracy')  

plt.xlabel('Epoch')  

plt.legend(['Train'], loc='upper left')  

plt.subplot(2,2,2)  

plt.plot(history.history['loss'])  

plt.title('Model loss')  

plt.ylabel('Loss')  

plt.xlabel('Epoch')  

plt.legend(['Train'], loc='upper left')  

plt.show()  

model.save("testnumber.h5")

4)预测

import glob  

from PIL import Image  

import random  

from keras.layers import Input,Dense  

from keras.layers import Flatten,Lambda,Dropout  

from keras.models import Model  

import keras.backend as K  

from keras.models import load_model  

import numpy as np  

from PIL import Image  

import glob  

import matplotlib.pyplot as plt  

from PIL import Image  

import random  

from keras.optimizers import Adam,RMSprop  

import tensorflow as tf  
def process(i):  

    img = Image.open(i,"r")  

    img = img.convert("L")  

    img = img.resize((wid,hei))  

    img = np.array(img).reshape((wid,hei,1))/255  

    return img  

def contrastive_loss(y_true, y_pred):  

     margin = 1  

     sqaure_pred = K.square(y_pred)  

     margin_square = K.square(K.maximum(margin - y_pred, 0))  

     return K.mean(y_true * sqaure_pred + (1 - y_true) * margin_square)  

def accuracy(y_true, y_pred): # Tensor上的操作  

    return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype)))  

def compute_accuracy(y_true, y_pred):  

    pred = y_pred.ravel() < 0.5  

    return np.mean(pred == y_true)  

imgset=[]  

wid = 28  

hei = 28  

imgset=[[],[],[],[],[],[],[],[],[],[]]  

for i in glob.glob("../test_new/*.jpg"):  

    imgset[int(i[-5])].append(process(i))  

model = load_model("../testnumber.h5",custom_objects={'contrastive_loss':contrastive_loss,'accuracy':accuracy})  

for i in range(50):  

    if random.randint(0,1)==0:  

        index=random.randint(0,9)  

        r1 = random.randint(0,len(imgset[index])-1)  

        r2 = random.randint(0,len(imgset[index])-1)  

        plt.figure()  

        plt.subplot(2,2,1)  

        plt.imshow((255*imgset[index][r1]).astype('uint8'))  

        plt.subplot(2,2,2)  

        plt.imshow((255*imgset[index][r2]).astype('uint8'))  

        y_pred = model.predict([np.array([imgset[index][r1]]),np.array([imgset[index][r2]])])  

        print(y_pred)  

        plt.show()  

    else:  

        index1 = random.randint(0,9)  

        index2 = random.randint(0,9)  

        while index1==index2:  

            index1 = random.randint(0,9)  

            index2 = random.randint(0,9)  

        r1 = random.randint(0,len(imgset[index1])-1)  

        r2 = random.randint(0,len(imgset[index2])-1)  

        plt.figure()  

        plt.subplot(2,2,1)  

        plt.imshow((255*imgset[index1][r1]).astype('uint8'))  

        plt.subplot(2,2,2)  

        plt.imshow((255*imgset[index2][r2]).astype('uint8'))  

        y_pred = model.predict([np.array([imgset[index1][r1]]),np.array([imgset[index2][r2]])])  

        print(y_pred)  

        plt.show()

测试结果显示:

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/511558.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Navicat for MySQL 15免费注册方法

一、效果图如下&#xff1a; 注&#xff1a;此方法仅用于非商业用途&#xff0c;请勿传播&#xff0c;否则后果自负。 二、下载安装 下载安装包&#xff0c;分为32位和6位&#xff0c;下载文件名&#xff1a;Navicat for MySQL 15.zip&#xff08;https://download.csdn.net/…

Prometheus+grafana环境搭建redis(docker+二进制两种方式安装)(四)

由于所有组件写一篇幅过长&#xff0c;所以每个组件分一篇方便查看&#xff0c;前三篇 Prometheusgrafana环境搭建方法及流程两种方式(docker和源码包)(一)-CSDN博客 Prometheusgrafana环境搭建rabbitmq(docker二进制两种方式安装)(二)-CSDN博客 Prometheusgrafana环境搭建m…

Nginx反向代理和缓存

一、Nginx反向代理 1.调度和代理的区别&#xff1a; 1.调度基于内核层面&#xff0c;代理基于应用层面 2.代理必须实现一手托两家 3.调度不需要监听任何端口&#xff0c;不需要工作任何应用程序&#xff0c;代理需要工作和上游服务器一模一样的进程 4.调度没有并发上限&am…

CentOS7安装flink1.17完全分布式

前提条件 准备三台CenOS7机器&#xff0c;主机名称&#xff0c;例如&#xff1a;node2&#xff0c;node3&#xff0c;node4 三台机器安装好jdk8&#xff0c;通常情况下&#xff0c;flink需要结合hadoop处理大数据问题&#xff0c;建议先安装hadoop&#xff0c;可参考 hadoop安…

nslookup查询网站是否支持IPV6

nslookup是一种网络管理命令行工具&#xff0c;可用于查询DNS域名和IP地址输入指令nslookup默认服务器和Address是当前上网所用的DNS服务器域名和地址A记录A&#xff08;Address&#xff09;记录指的是用来指定主机名或域名对应的IP记录。

java数据结构与算法刷题-----LeetCode547. 省份数量

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 文章目录 深度优先遍历广度优先遍历 本题考察图的连通分量个数。也就是所有…

24/04/02总结

API: bigdecima: 方法名 说明 public static BigDecimal valueof( double val) 静态获取对象 public BigDecimal add(BigDecimal val) 加法 public BigDecimal subtract(BigDecimal val…

JavaScript库,编写$()和getElementsByClassName()方法

背景: JavaScript库是一组预先编写好的JavaScript代码集合&#xff0c;旨在简化常见的网页开发任务。这些库通常包含了许多函数和方法&#xff0c;可以帮助开发人员处理各种任务&#xff0c;比如DOM操作、事件处理、动画效果、AJAX请求等等。使用JavaScript库可以节省开发时间…

Python 与机器学习,在服务器使用过程中,常用的 Linux 命令包括哪些?

&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 本博客旨在分享在实际开发过程中&#xff0c;开发者需要了解并熟练运用的 Linux 操作系统常用命令。Linux 作为一种操作系统&#xff0c;与 Windows 或 MacOS 并驾齐驱&#xff0c;尤其在服务器和开发环…

Redis缓存设计与性能优化【缓存和数据库不一致问题,解决方案:1.加过期时间这样可以一段时间后自动刷新 2.分布式的读写锁】

Redis缓存设计与性能优化 缓存与数据库双写不一致 缓存与数据库双写不一致 在大并发下&#xff0c;同时操作数据库与缓存会存在数据不一致性问题 1、双写不一致情况 2、读写并发不一致 解决方案&#xff1a; 1、对于并发几率很小的数据(如个人维度的订单数据、用户数据等)&a…

Spring中BeanFactoryPostProcessor详解

目录 功能与作用 使用案例 spring提供的常见BeanFactoryPostProcessor 1.EventListenerMethodProcessor 2.BeanDefinitionRegistryPostProcessor 功能与作用 使用案例 spring提供的唯一BeanDefinitionRegistryPostProcessor 总结 功能与作用 参考BeanFactoryPostProce…

FebHost:人工智能时代的新宠儿.AI域名

近年来,人工智能技术在各行各业迅猛发展,正在深刻改变着我们的生活。作为AI领域的专属域名,.AI域名正成为越来越多企业和个人的首选。 那么,.AI域名到底是什么呢?它是一种特殊的顶级域名(Top-Level Domain, TLD),于2013年由 安哥拉政府正式退出。与其他通用顶级域名如.com、.…

springboot之MybatisPlus

文章目录 一、ORM二、mybatis实际操作三、mybatis-plus 一、ORM 简单来说ORM就是一个能够帮我们把java中Bean类映射到数据库中。 使用mybatis-plus。 配置架包 <!-- MyBatisPlus依赖 --><dependency><groupId>com.baomidou</groupId><art…

能源照明运作机制与智能调控技术实现途径

随着城市化进程的加速&#xff0c;智慧城市已成为现代城市发展的重要方向。能源照明作为城市基础设施的重要组成部分&#xff0c;其运作机制与智能调控技术的实现对于提高城市能源利用效率、促进可持续发展具有重要意义。 能源照明是一个涵盖广泛、错综复杂的领域&#xff0c;它…

元宇宙虚拟空间的场景构造(二)

前言 该文章主要讲元宇宙虚拟空间的场景构造&#xff0c;基本核心技术点&#xff0c;不多说&#xff0c;直接引入正题。 场景的构造 使用引入的天空模块 this.sky new Sky(this); 在Sky模块里&#xff0c;有设置对其中的阳光进行不同时间段的光线处理。而天空又是怎么样的…

时序分解 | Matlab实现GSWOA-VMD改进鲸鱼优化算法优化变分模态分解时间序列信号分解

时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解 目录 时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现GSWOA-VMD改进鲸鱼优化算法优化变分模态分解时间序…

Vue3:用Pinia的storeToRefs结构赋值store数据

一、情景描述 我们学习了Pinia之后&#xff0c;知道&#xff0c;数据是配置在Pinia的state里面的。 那么&#xff0c;如果有多个字段需要取出来使用&#xff0c;并且不丢失数据的响应式&#xff0c;如何优雅的操作了&#xff1f; 这里就用到了Pinia的storeToRefs函数 二、案…

【信贷后台管理系统之axios的二次封装(四)】

文章目录 一、axios的二次封装二、配置后端接口地址三、登录接口api联调四、贷款申请接口api编写联调 一、axios的二次封装 示例&#xff1a;pandas 是基于NumPy 的一种工具&#xff0c;该工具是为了解决数据分析任务而创建的。 src下新建utils,新建request.js用来封装axios 控…

用户体验:探讨Facebook如何优化用户体验

在数字化时代&#xff0c;用户体验是社交媒体平台成功与否的关键因素之一。作为全球最大的社交媒体平台之一&#xff0c;Facebook一直在努力优化用户体验&#xff0c;从功能设计到内容呈现再到隐私保护&#xff0c;不断提升用户满意度。本文将深入探讨Facebook如何优化用户体验…

解决GNU Radio+USRP实现OFDM收发在接收端存在误码问题

文章目录 前言一、OFDM 收发流程1、OFDM 收端流程2、OFDM 收端流程 二、问题所在1、find_trigger_signal 函数解读2、general_work 函数3、问题所在 三、修改源码四、运行结果1、频谱2、传输数据测试 五、调试小技巧六、资源自取 前言 在使用 GNU Radio 时使用官方例程搭建 GN…