softmax的定义和目的:
softmax:常用于神经网络的输出层,以将原始的输出值转化为概率分布,从而使得每个类别的概率值在0到1之间,并且所有类别的概率之和为1。这使得Softmax函数特别适用于多类分类问题,其中模型需要预测输入样本属于多个可能类别中的哪一个。
特点:
softmax函数通过指数运算增强了数值间的差异,使得较大值在概率分布中占主导地位,同时抑制了较小值的影响。
Softmax函数是一种将K个实数值的向量转换为另一个K个实数值的向量,并且这些值的总和为1的函数。输入值可以是正数、负数、零或大于1的数,但softmax会将其转换为0到1之间的值,以便将它们解释为概率。如果输入值很小或为负数,softmax会将其转换为小概率;如果输入值很大,则softmax会将其转换为大概率,但概率值始终保持在0和1之间。
Softmax是逻辑回归的推广,可用于多类分类,其公式与用于逻辑回归的Sigmoid函数非常相似。只有当类别是互斥的时,softmax函数才能用于分类器。
许多多层神经网络都以倒数第二层结束,该层输出未经过适当缩放的实数值分数,可能难以处理。在这里,softmax非常有用,因为它将分数转换为归一化的概率分布,可以向用户显示或用作其他系统的输入。因此,通常将softmax函数作为神经网络的最后一层。
公式:
输入
Softmax函数的输入是一个包含K个元素的向量,其中不带箭头的z表示向量中的一个元素:
举例:
套用公式计算softmax:
输出是[0.006, 0.047, 0.946],总和大约为1。实际上,由于截断的原因,总和是0.999。最小的输入值5具有最低的概率,而最高的值10具有最高的概率。
PyTorch 使用指数和求和函数来计算softmax
PyTorch使用nn.Softmax
来计算softmax
原文链接:
https://medium.com/@hunter-j-phillips/a-simple-introduction-to-softmax-287712d69bac