开源AGV调度系统OpenTCS中的任务分派器(dispatcher)详解

OpenTCS中的任务分派器dispatcher详解

  • 1. 引言
  • 2. 任务分派器(dispatcher)
    • 2.1 默认的停车位置选择
    • 2.2 可选停车位置属性
    • 2.3 默认的充电位置选择
    • 2.4 即时运输订单分配
  • 3. 默认任务分派器的配置项
  • 4. 参考资料与源码

1. 引言

openTCS是一项著名的开源运输控制系统,我在之前的一篇文章
开源AGV调度系统 OpenTCS 5.4 开发环境配置与编译运行中对该系统也做了初步介绍,该项研究工作丢了快三年了,由于发现还有不少感兴趣的读者,因此,我想继续撰写系列文章对该系统进行详解。
在这里插入图片描述

2. 任务分派器(dispatcher)

openTCS中默认的任务分派器(Default dispatcher)是openTCS内置的重要策略模块,当然也是允许用户自定义和替换的。
任务分派器(dispatcher)的职能为:当订单或者车辆处于可用状态,默认分派器决定该订单或者车辆下一步的工作如何进行。并且,默认分派器在执行此操作时需遵循以下步骤:

在这里插入图片描述

  1. 将新的运输订单准备就绪。需要包括检查一般可达性和未完成的依赖项。
  2. 对当前正在进行的进程进行更新。一般包括:
  • 撤销运输订单
  • 成功完成的运输订单
  • 给正在执行序列订单的车辆分配后续的运输订单;
  1. 将当前闲置的车辆分配给可执行的订单。此时需要考虑到一些准则:
  • 车辆:
    • 该车辆在行驶路线上的位置必须已知;
    • 该车辆没有被分配给运输订单或分配的任务不是必要的(比如电量充足的情况下执行充电任务或或前往停车点);
    • 该车电量尚不影响使用;
  • 订单:
    • 该订单是一般可调度的;
    • 该订单不是已被某车辆执行的序列订单的一部分;
  • 分配机制:
    • 如果可处理的运输订单大于未占用的车辆,则车辆按照可配置的标准进行排序,然后,默认分派器迭代排序后的列表,对于每辆车,查找其可执行的所有订单,计算所需的路线,根据可配置的标准对候选车辆进行排序,并分配第一个任务;
    • 如果可处理的运输订单少于未占用的车辆,则运输订单按照可配置的标准进行排序,然后默认分派器对列表进行迭代,为每个运输订单找到所有可执行它的车辆,然后计算所需路径,并安排好第一个任务;
  1. 将仍闲置的车辆送往充电站。需要考虑的标准为:
  • 该车辆在行驶路线上的位置必须处于已知状态;
  • 该车辆的电量水平降低了。
  1. 将仍闲置的车辆送往充电站。需要考虑的标准为:
  • 该车辆在行驶路线上的位置必须处于已知状态;
  • 该车辆不能已经在停车点位置了。

2.1 默认的停车位置选择

当一辆小车被派往停车点时,默认选择最接近(依据路由)且未被占用的停车点。可以通过设置以下关键属性来给车辆分配固定的位置。

  • tcs:preferredParkingPosition:模型中的点名。如果此停车点已被占用,则车辆选择附近距离最近的停车点代替。
  • tcs:assignedParkingPosition:模型中的点名。如果此停车点已被占用,则车辆不会前往到其他停车点,而是保持原地不动。
    assignedParkingPosition优先级高于preferredParkingPosition

2.2 可选停车位置属性

停车位置的优先级是可以明确的,车辆也可以按照一种新的停车序列进行重新停车操作。例如将车辆停放在运输订单频繁的第一目的地附近的位置。
要给停车点设置一个优先级,可以用tcs:parkingPositionPriority键设置一个属性在点上。该属性的值应为十进制整数,值越小,则会导致停车位的优先级更高。
1.3. Default recharging location selection

2.3 默认的充电位置选择

当车辆被派往充电位置时,默认选择最接近(依据路由)且未被占用的充电位置。也可通过为以下键设置属性来给车辆分配固定位置:

  • preferredRechargeLocation:如果此充电位置已被占用,则选择附近距离最近的充电位置。
  • assignedRechargeLocation:如果此充电位置已被选择,则车辆不会被派往到其他充电位置。
    assignedRechargeLocation优先级高于preferredRechargeLocation

2.4 即时运输订单分配

系统除了根据默认的流程和规则分配运输订单外,还可以显式分配运输订单(即时)。运输订单的即时分配支持具有预期车辆的运输订单。在这样的情况下,运输订单及其预期车辆通常处于可能进行分配的状态,但在常规调度程序流中被某些过滤条件阻止,因此采取这种方法将会很有用。

Although the immediate assignment of transport orders bypasses some of the filter criteria in the regular dispatcher flow, it works only in specific situations. Regarding the transport order’s state:

尽管传输订单的即时分配绕过了常规调度流程中的一些过滤条件,但它只在特定情况下起作用。考虑运输订单的状态:

  • 运输订单的状态必须是可指派的(DISPATCHABLE)。
  • 运输订单不能是订单序列的一部分。
  • 必须设置运输订单的预定车辆。

至于(预定)车辆的状态:

  • 车辆的处理状态必须为IDLE
  • 车辆状态必须为IDLECHARGING
  • 车辆的集成级别必须是TO_BE_UTILIZED
  • 车辆必须被报告在已知位置。
  • 车辆不得处理订单序列。

除了运输订单和预定车辆的各自状态之外,分派器可能还有其他特定的原因来拒绝即时分配。

3. 默认任务分派器的配置项

默认任务分派器提供以下配置项实现可配置.
defaultdispatcher.orderCandidatePriorities

  • Type: Comma-separated list of strings
  • Trigger for changes to be applied: on application start
  • Description: Keys by which to prioritize transport order candidates for assignment.
    Possible values:
  • BY_AGE: Sort by transport order age, oldest first.
  • BY_DEADLINE: Sort by transport order deadline, most urgent first.
  • DEADLINE_AT_RISK_FIRST: Sort orders with deadlines at risk first.
  • BY_COMPLETE_ROUTING_COSTS: Sort by complete routing costs, lowest first.
  • BY_INITIAL_ROUTING_COSTS: Sort by routing costs for the first destination.
  • BY_ORDER_NAME: Sort by transport order name, lexicographically.

defaultdispatcher.orderPriorities

  • Type: Comma-separated list of strings
  • Trigger for changes to be applied: on application start
  • Description: Keys by which to prioritize transport orders for assignment.
    Possible values:
    BY_AGE: Sort by age, oldest first.
    BY_DEADLINE: Sort by deadline, most urgent first.
    DEADLINE_AT_RISK_FIRST: Sort orders with deadlines at risk first.
    BY_NAME: Sort by name, lexicographically.

defaultdispatcher.vehicleCandidatePriorities

  • Type: Comma-separated list of strings
  • Trigger for changes to be applied: on application start
  • Description: Keys by which to prioritize vehicle candidates for assignment.
    Possible values:
    BY_ENERGY_LEVEL: Sort by energy level of the vehicle, highest first.
    IDLE_FIRST: Sort vehicles with state IDLE first.
    BY_COMPLETE_ROUTING_COSTS: Sort by complete routing costs, lowest first.
    BY_INITIAL_ROUTING_COSTS: Sort by routing costs for the first destination.
    BY_VEHICLE_NAME: Sort by vehicle name, lexicographically.

defaultdispatcher.vehiclePriorities

  • Type: Comma-separated list of strings
  • Trigger for changes to be applied: on application start
  • Description: Keys by which to prioritize vehicles for assignment.
    Possible values:
    BY_ENERGY_LEVEL: Sort by energy level, highest first.
    IDLE_FIRST: Sort vehicles with state IDLE first.
    BY_NAME: Sort by name, lexicographically.

defaultdispatcher.deadlineAtRiskPeriod
Type: Integer
Trigger for changes to be applied: on application start
Description: The time window (in ms) before its deadline in which an order becomes urgent.

defaultdispatcher.assignRedundantOrders

  • Type: Boolean
  • Trigger for changes to be applied: instantly
  • Description: Whether orders to the current position with no operation should be assigned.

defaultdispatcher.dismissUnroutableTransportOrders

  • Type: Boolean
  • Trigger for changes to be applied: instantly
  • Description: Whether unroutable incoming transport orders should be marked as UNROUTABLE.

defaultdispatcher.reroutingImpossibleStrategy

  • Type: String
  • Trigger for changes to be applied: instantly
  • Description: The strategy to use when rerouting of a vehicle results in no route at all.
    The vehicle then continues to use the previous route in the configured way.
    Possible values:
    IGNORE_PATH_LOCKS: Stick to the previous route, ignoring path locks.
    PAUSE_IMMEDIATELY: Do not send further orders to the vehicle; wait for another rerouting opportunity.
    PAUSE_AT_PATH_LOCK: Send further orders to the vehicle only until it reaches a locked path; then wait for another rerouting opportunity.

defaultdispatcher.parkIdleVehicles

  • Type: Boolean
  • Trigger for changes to be applied: instantly
  • Description: Whether to automatically create parking orders for idle vehicles.

defaultdispatcher.considerParkingPositionPriorities

  • Type: Boolean
  • Trigger for changes to be applied: instantly
  • Description: Whether to consider parking position priorities when creating parking orders.

defaultdispatcher.reparkVehiclesToHigherPriorityPositions

  • Type: Boolean
  • Trigger for changes to be applied: instantly
  • Description: Whether to repark vehicles to parking positions with higher priorities.

defaultdispatcher.rechargeIdleVehicles

  • Type: Boolean
  • Trigger for changes to be applied: instantly
  • Description: Whether to automatically create recharge orders for idle vehicles.

defaultdispatcher.keepRechargingUntilFullyCharged

  • Type: Boolean
  • Trigger for changes to be applied: instantly
  • Description: Whether vehicles must be recharged until they are fully charged.
    If false, vehicle must only be recharged until sufficiently charged.

defaultdispatcher.idleVehicleRedispatchingInterval

  • Type: Integer
  • Trigger for changes to be applied: when/after plant model is loaded
  • Description: The interval between redispatching of vehicles.

4. 参考资料与源码

本文内容参考:官方文档

该模块源码位于:
openTCS-Strategies-Default/src/main/java/org/opentcs/strategies/basic/dispatching/DefaultDispatcher.java,代码如下:

 public DefaultDispatcher(OrderReservationPool orderReservationPool,
                           TransportOrderUtil transportOrderUtil,
                           InternalVehicleService vehicleService,
                           @ApplicationEventBus EventSource eventSource,
                           @KernelExecutor ScheduledExecutorService kernelExecutor,
                           FullDispatchTask fullDispatchTask,
                           Provider<PeriodicVehicleRedispatchingTask> periodicDispatchTaskProvider,
                           DefaultDispatcherConfiguration configuration,
                           RerouteUtil rerouteUtil,
                           OrderAssigner orderAssigner,
                           TransportOrderAssignmentChecker transportOrderAssignmentChecker) {
    this.orderReservationPool = requireNonNull(orderReservationPool, "orderReservationPool");
    this.transportOrderUtil = requireNonNull(transportOrderUtil, "transportOrderUtil");
    this.vehicleService = requireNonNull(vehicleService, "vehicleService");
    this.eventSource = requireNonNull(eventSource, "eventSource");
    this.kernelExecutor = requireNonNull(kernelExecutor, "kernelExecutor");
    this.fullDispatchTask = requireNonNull(fullDispatchTask, "fullDispatchTask");
    this.periodicDispatchTaskProvider = requireNonNull(periodicDispatchTaskProvider,
                                                       "periodicDispatchTaskProvider");
    this.configuration = requireNonNull(configuration, "configuration");
    this.rerouteUtil = requireNonNull(rerouteUtil, "rerouteUtil");
    this.orderAssigner = requireNonNull(orderAssigner, "orderAssigner");
    this.transportOrderAssignmentChecker = requireNonNull(transportOrderAssignmentChecker,
                                                          "transportOrderAssignmentChecker");
  }

  @Override
  public void initialize() {
    if (isInitialized()) {
      return;
    }

    LOG.debug("Initializing...");

    transportOrderUtil.initialize();
    orderReservationPool.clear();

    fullDispatchTask.initialize();

    implicitDispatchTrigger = new ImplicitDispatchTrigger(this);
    eventSource.subscribe(implicitDispatchTrigger);

    LOG.debug("Scheduling periodic dispatch task with interval of {} ms...",
              configuration.idleVehicleRedispatchingInterval());
    periodicDispatchTaskFuture = kernelExecutor.scheduleAtFixedRate(
        periodicDispatchTaskProvider.get(),
        configuration.idleVehicleRedispatchingInterval(),
        configuration.idleVehicleRedispatchingInterval(),
        TimeUnit.MILLISECONDS
    );

    initialized = true;
  }

  @Override
  public void terminate() {
    if (!isInitialized()) {
      return;
    }

    LOG.debug("Terminating...");

    periodicDispatchTaskFuture.cancel(false);
    periodicDispatchTaskFuture = null;

    eventSource.unsubscribe(implicitDispatchTrigger);
    implicitDispatchTrigger = null;

    fullDispatchTask.terminate();

    initialized = false;
  }

  @Override
  public boolean isInitialized() {
    return initialized;
  }

  @Override
  public void dispatch() {
    LOG.debug("Scheduling dispatch task...");
    // Schedule this to be executed by the kernel executor.
    kernelExecutor.submit(fullDispatchTask);
  }

  @Override
  public void withdrawOrder(TransportOrder order, boolean immediateAbort) {
    requireNonNull(order, "order");
    checkState(isInitialized(), "Not initialized");

    // Schedule this to be executed by the kernel executor.
    kernelExecutor.submit(() -> {
      LOG.debug("Scheduling withdrawal for transport order '{}' (immediate={})...",
                order.getName(),
                immediateAbort);
      transportOrderUtil.abortOrder(order, immediateAbort);
    });
  }

  @Override
  public void withdrawOrder(Vehicle vehicle, boolean immediateAbort) {
    requireNonNull(vehicle, "vehicle");
    checkState(isInitialized(), "Not initialized");

    // Schedule this to be executed by the kernel executor.
    kernelExecutor.submit(() -> {
      LOG.debug("Scheduling withdrawal for vehicle '{}' (immediate={})...",
                vehicle.getName(),
                immediateAbort);
      transportOrderUtil.abortOrder(vehicle, immediateAbort);
    });
  }

  @Override
  public void topologyChanged() {
    if (configuration.rerouteOnTopologyChanges()) {
      LOG.debug("Scheduling reroute task...");
      kernelExecutor.submit(() -> {
        LOG.info("Rerouting all vehicles due to topology change...");
        rerouteUtil.reroute(vehicleService.fetchObjects(Vehicle.class), ReroutingType.REGULAR);
      });
    }
  }

  @Override
  public void reroute(Vehicle vehicle, ReroutingType reroutingType) {
    LOG.debug("Scheduling reroute task...");
    kernelExecutor.submit(() -> {
      LOG.info(
          "Rerouting vehicle due to explicit request: {} ({}, current position {})...",
          vehicle.getName(),
          reroutingType,
          vehicle.getCurrentPosition() == null ? null : vehicle.getCurrentPosition().getName()
      );
      rerouteUtil.reroute(vehicle, reroutingType);
    });
  }

  @Override
  public void assignNow(TransportOrder transportOrder)
      throws TransportOrderAssignmentException {
    requireNonNull(transportOrder, "transportOrder");

    TransportOrderAssignmentVeto assignmentVeto
        = transportOrderAssignmentChecker.checkTransportOrderAssignment(transportOrder);

    if (assignmentVeto != TransportOrderAssignmentVeto.NO_VETO) {
      throw new TransportOrderAssignmentException(
          transportOrder.getReference(),
          transportOrder.getIntendedVehicle(),
          assignmentVeto
      );
    }

    orderAssigner.tryAssignments(
        List.of(vehicleService.fetchObject(Vehicle.class, transportOrder.getIntendedVehicle())),
        List.of(transportOrder)
    );
  }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/511004.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OpenHarmony实战:轻量级系统之子系统移植概述

OpenHarmony系统功能按照“系统 > 子系统 > 部件”逐级展开&#xff0c;支持根据实际需求裁剪某些非必要的部件&#xff0c;本文以部分子系统、部件为例进行介绍。若想使用OpenHarmony系统的能力&#xff0c;需要对相应子系统进行适配。 OpenHarmony芯片适配常见子系统列…

PID算法调参经验分享

本篇文章旨在分享我对PID算法调节参数的经验&#xff0c;觉得掌握PID调参是一种十分重要的技能&#xff0c;在此记录一下。希望我的分享对你有所帮助。有关PID的一些文章&#xff0c;可以参考以下文章。 PID算法参数调节经验分享-CSDN博客 PID算法详解&#xff08;代码详解篇&a…

一起来从Solidworks中导出URDF模型

这个博客是用来记录关于【从Solidworks中导出URDF模型】的学习历程&#xff1a; 相关课程链接见&#xff1a;如何从Solidworks导出URDF模型 • 古月 (guyuehome.com) 下面让我们一起开始吧&#xff01;&#xff01;&#xff01; 1. sw_urdf_exporter插件介绍 插件下载链接&…

Free RTOS day3

1.思维导图 2.重新实现一遍任务调度算法的代码。 &#xff08;1&#xff09;抢占式调度 #include "FreeRTOS.h" #include "task.h" #include "main.h" #include "cmsis_os.h" #include <stdio.h>osThreadId_t defaultTaskHand…

MTFormer

作者未提供代码

类和对象的下篇

&#x1d649;&#x1d65e;&#x1d658;&#x1d65a;!!&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦ &#x1f44f;&#x1f3fb;‧✧̣̥̇:Solitary_walk ⸝⋆ ━━━┓ - 个性标签 - &#xff1a;来于“云”的“羽球人”。…

使用 FinalShell 进行远程连接(ssh 远程连接 Linux 服务器)

目录 前言 基本使用教程 新建远程连接 连接主机 自定义命令 路由追踪 前言 后端开发&#xff0c;必然需要和服务器打交道&#xff0c;部署应用&#xff0c;排查问题&#xff0c;查看运行日志等等。一般服务器都是集中部署在机房中&#xff0c;也有一些直接是云服务器&am…

基于蚁群算法的三维路径规划(matlab实现)

作品简介 1 理论基础 1.1 三维路径规划问题概述 三维路径规划指在已知三维地图中&#xff0c;规划出一条从出发点到目标点满足某项指标最优&#xff0c;并且避开了所有三维障碍物的三维最优路径。现有的路径规划算法中&#xff0c;大部分算法是在二维规划平面或准二维规划平面…

【MySQL】数据类型(1)

数据类型1 一、整形数据二、位图类型三、浮点类型 一、整形数据 我们的MySQL&#xff0c;有很多的数据类型&#xff0c;其中&#xff0c;我们在建表时&#xff0c;肯定要用到相应的数据类型。 整形有 tinyint, samllint , mediumint, int, bigint。 我们第一眼看上去&#x…

2024牛客春招冲刺题单 ONT97 牛牛的递增之旅 【中等 链表 Java,Go,PHP】

题目 题目链接&#xff1a; https://www.nowcoder.com/practice/e463addab7d548819d6b6483335651b5 思路 核心&#xff1a;链表中删除节点。链表中增删改查节点&#xff0c;最好新建一个虚拟头结点start,end&#xff0c; 然后end链接上符合条件的已经存在的节点&#xff0c;最…

【NTN 卫星通信】卫星辅助补充下行数据应用场景

1 卫星辅助下行数据场景概述 在乡村地区向地面接入网覆盖欠佳或无线电条件(例如山谷地区)的用户提供无线接入网可能无法提供所需的服务性能。   增加补充下行数据容量(例如由NTN提供)将有助改善服务性能和QoE&#xff0c;例如支援与视讯消费有关的流量不对称。因此&#xff0…

开始开发微信小程序前的准备工作,认真看完奥

一&#xff0c;技术选型和技术点 1&#xff0c;小程序前端 wxml css JavaScript MINA原生小程序框架 2&#xff0c;数据库 云开发 云数据库 云存储 云数据库是云开发自带的数据库(json类型的弱关系型的基于MongoDB的数据库) 3&#xff0c;后台&#xff08;云开发…

剑指offer打卡 JZ8 二叉树的下一个结点

在牛客网刷的&#xff0c;还是跟leetcode一样非acm模式&#xff0c;由于急着暑期实习题量不固定&#xff0c;八股算法轮刷 打卡内容偏个人笔记&#xff0c;本人水平一般(代码随想录稀里糊涂刷了一遍)&#xff0c;从小白开始分析(甚至会分析语法)&#xff0c;尽量一题多解深入探…

正确面对“压力面试”,不要自我PUA

最近&#xff0c;经常在网上看到小伙伴们吐槽&#xff1a;“今年工作本来就难找&#xff0c;面试官还特别强势&#xff0c;面完试觉得自己太菜了&#xff0c;我是不是找不到工作了。” STOP! 千万别这么想&#xff01; 诚然&#xff0c;我们在面试时&#xff0c;有可能会遇到…

LeetCode11. 盛最多水的容器(Java)

给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明&#xff1a;你不能倾斜容器。 示例 …

分布式唯一ID 雪花算法

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;算法分析与设计 ⛺️稳中求进&#xff0c;晒太阳 算法具体介绍 雪花算法是 64 位 的二进制&#xff0c;一共包含了四部分&#xff1a; 1位是符号位&#xff0c;也就是最高位&#xff0c;…

Redis.配置文件

基础篇Redis 6.1.2 .配置文件 spring:redis:host: 192.168.150.101port: 6379password: 123321lettuce:pool:max-active: 8 #最大连接max-idle: 8 #最大空闲连接min-idle: 0 #最小空闲连接max-wait: 100ms #连接等待时间6.1.3.测试代码 SpringBootTest class RedisDemo…

搜索二叉树详细介绍C++

文章目录 前言一、搜索二叉树介绍二、二叉搜索树实现1.查找2.插入3.删除 三、二叉搜索树递归实现1.查找2.插入3.删除 四、二叉搜索树性能分析五、二叉搜索树应用1.K模型2.KV模型 总结 前言 在本篇文章中&#xff0c;我们将会学到数据结构中有关二叉树中一种特殊的结构-----搜索…

如何在多个地理位置的企业中部署SD-WAN?

企业业务的全球化和分布式办公模式的普及&#xff0c;跨地域的网络连接变得至关重要。SD-WAN&#xff08;软件定义广域网&#xff09;技术为企业提供了一种灵活、高效、安全的网络解决方案。本文将介绍如何在多个地理位置的企业中部署SD-WAN&#xff0c;以提高网络性能和管理效…

HTML基本元素

文章目录 如何制作标题如何制作文字如何做粗体字检查我们程序码给输出文字添加属性 HTML 一个HTML标签包含着&#xff1a; 起始标签&#xff1a;它包含了元素的名字&#xff0c;夹在一对 <、>&#xff08;尖括号&#xff09;之间。它指明元素从何处开始生效。结束标签&am…