超市销售数据-python数据分析项目

Python数据分析项目-基于Python的销售数据分析项目

文章目录

  • Python数据分析项目-基于Python的销售数据分析项目
  • 项目介绍
    • 数据
    • 分析结果导出
    • 数据查阅
  • 数据分析内容
    • 哪些类别比较畅销?
    • 哪些商品比较畅销?
    • 不同门店的销售额占比
    • 哪个时间段是超市的客流高封期?
    • 查看源数据类型
    • 计算本月的相关的指标
    • 计算上月相关指标
    • 计算去年同期相关指标
    • 创建DataFrame 添加同比和环比字段

项目介绍

数据

在这里插入图片描述
在这里插入图片描述

分析结果导出

在这里插入图片描述

近些年来,国内大型连锁超市如雨后春笋般迸发,对于各个超市来说,竞争压力不可谓 不大,为了拓展、保留客户,各种促销手段应运而生。 以下为国内某连锁超市的成交统计数据,针对于该数据,挖掘其中价值,为该超市的促销手段提供技术支持。

数据查阅

import pandas as pd
from datetime import datetime

# 导入数据源,parse_dates:将时间字符串转为日期时间格式
data=pd.read_csv("order-14.3.csv",parse_dates=["成交时间"],encoding='gbk')
print(data.shape)
data.head()

(3478, 7)
商品ID	类别ID	门店编号	单价	销量	成交时间	订单ID
0	30006206	915000003	CDNL	25.23	0.328	2017-01-03 09:56:00	20170103CDLG000210052759
1	30163281	914010000	CDNL	2.00	2.000	2017-01-03 09:56:00	20170103CDLG000210052759
2	30200518	922000000	CDNL	19.62	0.230	2017-01-03 09:56:00	20170103CDLG000210052759
3	29989105	922000000	CDNL	2.80	2.044	2017-01-03 09:56:00	20170103CDLG000210052759
4	30179558	915000100	CDNL	47.41	0.226	2017-01-03 09:56:00	20170103CDLG000210052759

数据分析内容

哪些类别比较畅销?

# ascending=False 降序
data.groupby("类别ID")["销量"].sum().reset_index().sort_values(by="销量",ascending=False).head(10)
  1. data.groupby("类别ID")["销量"].sum(): 这一部分首先对数据集 data 按照 “类别ID” 进行分组,然后针对每个类别的销量("销量"列)进行求和操作。

  2. .reset_index(): 对分组后的结果进行重置索引,将其转换为一个新的DataFrame,以便后续操作。

  3. .sort_values(by="销量", ascending=False): 对DataFrame按照销量("销量"列)进行降序排序,即将销量最高的类别排在最前面。参数 ascending=False 表示按降序排列。

  4. .head(10): 获取排序后的前10行数据,即销量最高的10个商品类别。

哪些商品比较畅销?

pd.pivot_table(data,index="商品ID",values="销量",aggfunc="sum").reset_index().sort_values(by="销量",ascending=False).head(10)
  1. pd.pivot_table(data, index="商品ID", values="销量", aggfunc="sum"):这部分代码使用了 Pandas 库中的 pivot_table 函数,它用于创建透视表。在这里,它的参数含义如下:

    • data:指定数据源,即数据集。
    • index="商品ID":表示将 “商品ID” 列作为透视表的行索引。
    • values="销量":表示将 “销量” 列作为需要聚合的数值列。
    • aggfunc="sum":表示对 “销量” 列进行汇总计算,这里使用的是求和函数 sum
  2. .reset_index():对生成的透视表结果进行重置索引,将其转换为一个新的DataFrame对象。

  3. .sort_values(by="销量", ascending=False):对透视表结果按照 “销量” 列进行降序排序,即将销量最高的商品排在最前面。参数 ascending=False 表示按降序排列。

  4. .head(10):获取排序后的前10行数据,即销量最高的10个商品。

不同门店的销售额占比

data["销售额"]=data["销量"]*data["单价"]
# 不同门店销售
print(data.groupby("门店编号")["销售额"].sum())
# 不同门店销售额占比
dfbb = data.groupby("门店编号")[["销售额"]].sum()/data["销售额"].sum()
dfbb.rename(columns={'销售额':'销售额占比'},inplace=True)
dfbb
  1. data["销售额"]=data["销量"]*data["单价"]:首先,创建了一个新的列 “销售额”,其值为 “销量” 列和 “单价” 列对应位置的乘积,表示每个商品的销售额。

  2. print(data.groupby("门店编号")["销售额"].sum()):使用 groupby 函数按照 “门店编号” 对数据进行分组,然后对每个门店的销售额进行求和操作,得到不同门店的销售额总和。

  3. dfbb = data.groupby("门店编号")[["销售额"]].sum()/data["销售额"].sum():这一部分是计算各门店销售额在总销售额中的占比。首先,使用 groupby 函数按照 “门店编号” 分组,然后对每个门店的销售额进行求和操作。接着,将每个门店的销售额与总销售额相除,得到销售额占比。

  4. dfbb.rename(columns={'销售额':'销售额占比'},inplace=True):对生成的 DataFrame 对象进行重命名,将列名 “销售额” 改为 “销售额占比”,以便更清晰地表示数据含义。

import matplotlib as plt

plt.rcParams['figure.figsize'] = (16.0, 8.0) # 设置figure_size尺寸
plt.rcParams['font.sans-serif']=['SimHei']    # 用来设置字体样式以正常显示中文标签
plt.rcParams['axes.unicode_minus']=False    # 默认是使用Unicode负号,设置正常显示字符,如正常显示负号
plt.rcParams['font.size'] = 15

(data.groupby("门店编号")["销售额"].sum()/data["销售额"].sum()).plot.pie()

在这里插入图片描述

哪个时间段是超市的客流高封期?

# 利用自定义时间格式函数strftime提取小时数
data["小时"]=data["成交时间"].map(lambda x:int(x.strftime("%H")))
# 对小时和订单去重
traffic=data[["小时","订单ID"]].drop_duplicates()
# 求每小时的客流量
traffic.groupby("小时")["订单ID"].count().plot()
  1. data["小时"]=data["成交时间"].map(lambda x:int(x.strftime("%H"))):这一部分代码使用了 map 函数和 lambda 表达式,将 “成交时间” 列中的时间信息提取出小时数,并存储到新的列 “小时” 中。strftime("%H") 方法用于将时间转换为字符串,并提取小时部分。

  2. traffic=data[["小时","订单ID"]].drop_duplicates():这一部分代码将数据集中的 “小时” 和 “订单ID” 列提取出来,并对其进行去重操作,得到每小时的订单数量。

  3. traffic.groupby("小时")["订单ID"].count().plot():这部分代码计算了每小时的客流量,首先使用 groupby 函数按照 “小时” 列进行分组,然后对每个小时的订单ID数量进行计数操作。最后,调用 plot 方法绘制曲线图,横轴为小时,纵轴为客流量(订单数量)。

在这里插入图片描述

查看源数据类型

import pandas as pd
from datetime import datetime

data=pd.read_csv("order-14.1.csv",parse_dates=["成交时间"],encoding='gbk')
data.head()
# print(data.head(5))
# 查看源数据类型
data.info()
  1. import pandas as pd:这行代码导入了Pandas库,并将其重命名为 pd,以便在后续代码中使用。

  2. from datetime import datetime:从 datetime 模块中导入 datetime 类。这是为了后续在解析日期时间时使用。

  3. data=pd.read_csv("order-14.1.csv",parse_dates=["成交时间"],encoding='gbk'):这行代码使用 pd.read_csv() 函数读取名为 “order-14.1.csv” 的CSV文件,并将其加载到名为 data 的DataFrame中。其中的参数解释如下:

    • "order-14.1.csv":指定要读取的CSV文件的路径。
    • parse_dates=["成交时间"]:指定要解析为日期时间类型的列名。在这里,“成交时间” 列会被解析为日期时间类型,以便后续进行时间序列的分析。
    • encoding='gbk':指定文件的编码格式为GBK,以正确解析包含中文字符的数据。
  4. data.head():这行代码输出 data DataFrame 的前5行数据,以便查看数据的样式和结构。

  5. data.info():这行代码用于打印有关DataFrame的基本信息,包括每列的名称、非空值的数量以及每列的数据类型等。这有助于了解数据的完整性和结构。

计算本月的相关的指标

# 计算本月的相关的指标
This_month=data[(data["成交时间"]>=datetime(2018,2,1))&(data["成交时间"]<=datetime(2018,2,28))]
# 销售额计算
sales_1=(This_month["销量"]*This_month['单价']).sum()
# 客流量计算
traffic_1=This_month["订单ID"].drop_duplicates().count()
# 客单价计算
s_t_1=sales_1/traffic_1
print("本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}".format(sales_1,traffic_1,s_t_1))

  1. This_month=data[(data["成交时间"]>=datetime(2018,2,1))&(data["成交时间"]<=datetime(2018,2,28))]:这行代码根据成交时间筛选出了本月的订单数据。使用了DataFrame的布尔索引,选择了成交时间在2月1日至2月28日之间的数据。

  2. sales_1=(This_month["销量"]*This_month['单价']).sum():这行代码计算了本月的销售额。首先,将销量和单价相乘得到每笔订单的销售额,然后对所有订单的销售额进行求和。

  3. traffic_1=This_month["订单ID"].drop_duplicates().count():这行代码计算了本月的客流量。首先,对订单ID列进行去重操作,然后计算去重后的订单数量,即客流量。

  4. s_t_1=sales_1/traffic_1:这行代码计算了本月的客单价,即销售额除以客流量。

  5. print("本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}".format(sales_1,traffic_1,s_t_1)):这行代码将计算结果打印输出,格式化输出了本月的销售额、客流量和客单价,保留两位小数。

计算上月相关指标

# 计算上月相关指标
last_month=data[(data["成交时间"]>=datetime(2018,1,1))&(data["成交时间"]<=datetime(2018,1,31))]

# 销售额计算
sales_2=(last_month["销量"]*last_month['单价']).sum()
# 客流量计算
traffic_2=last_month["订单ID"].drop_duplicates().count()
# 客单价计算
s_t_2=sales_2/traffic_2
print("本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}".format(sales_2,traffic_2,s_t_2))

  1. last_month=data[(data["成交时间"]>=datetime(2018,1,1))&(data["成交时间"]<=datetime(2018,1,31))]:这行代码根据成交时间筛选出了上月的订单数据。使用了DataFrame的布尔索引,选择了成交时间在1月1日至1月31日之间的数据。

  2. sales_2=(last_month["销量"]*last_month['单价']).sum():这行代码计算了上月的销售额。首先,将销量和单价相乘得到每笔订单的销售额,然后对所有订单的销售额进行求和。

  3. traffic_2=last_month["订单ID"].drop_duplicates().count():这行代码计算了上月的客流量。首先,对订单ID列进行去重操作,然后计算去重后的订单数量,即客流量。

  4. s_t_2=sales_2/traffic_2:这行代码计算了上月的客单价,即销售额除以客流量。

  5. print("本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}".format(sales_2,traffic_2,s_t_2)):这行代码将计算结果打印输出,格式化输出了上月的销售额、客流量和客单价,保留两位小数。

计算去年同期相关指标

# 计算去年同期相关指标
same_month=data[(data["成交时间"]>=datetime(2017,2,1))&(data["成交时间"]<=datetime(2017,2,28))]

sales_3=(same_month["销量"]*same_month["单价"]).sum()

traffic_3=same_month["订单ID"].drop_duplicates().count()
s_t_3=sales_3/traffic_3
print("本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}".format(sales_3,traffic_3,s_t_3))

  1. same_month=data[(data["成交时间"]>=datetime(2017,2,1))&(data["成交时间"]<=datetime(2017,2,28))]:这行代码根据成交时间筛选出了去年同期(2017年2月)的订单数据。使用了DataFrame的布尔索引,选择了成交时间在2017年2月1日至2017年2月28日之间的数据。

  2. sales_3=(same_month["销量"]*same_month["单价"]).sum():这行代码计算了去年同期的销售额。首先,将销量和单价相乘得到每笔订单的销售额,然后对所有订单的销售额进行求和。

  3. traffic_3=same_month["订单ID"].drop_duplicates().count():这行代码计算了去年同期的客流量。首先,对订单ID列进行去重操作,然后计算去重后的订单数量,即客流量。

  4. s_t_3=sales_3/traffic_3:这行代码计算了去年同期的客单价,即销售额除以客流量。

  5. print("本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}".format(sales_3,traffic_3,s_t_3)):这行代码将计算结果打印输出,格式化输出了去年同期的销售额、客流量和客单价,保留两位小数。

# 利用函数提高编码效率
def get_month_data(data):
    sale=(data["销量"]*data["单价"]).sum()
    traffic=data["订单ID"].drop_duplicates().count()
    s_t=sale/traffic
    return (sale,traffic,s_t)

# 本月相关指数
sales_1,traffic_1,s_t_1=get_month_data(This_month)
print(sales_1,traffic_1,s_t_1)

# 上月相关指数
sales_2,traffic_2,s_t_2=get_month_data(last_month)
print(sales_2,traffic_2,s_t_2)

# 去年同期相关指数
sales_3,traffic_3,s_t_3=get_month_data(same_month)
print(sales_3,traffic_3,s_t_3)

  1. def get_month_data(data)::这行代码定义了一个名为 get_month_data() 的函数,它接受一个数据集 data 作为输入参数。

  2. sale=(data["销量"]*data["单价"]).sum():在函数内部,这行代码计算了给定数据的销售额。首先,将销量和单价相乘得到每笔订单的销售额,然后对所有订单的销售额进行求和。

  3. traffic=data["订单ID"].drop_duplicates().count():这行代码计算了给定数据的客流量。首先,对订单ID列进行去重操作,然后计算去重后的订单数量,即客流量。

  4. s_t=sale/traffic:这行代码计算了给定数据的客单价,即销售额除以客流量。

  5. return (sale,traffic,s_t):这行代码将销售额、客流量和客单价作为元组返回给调用方。

  6. sales_1,traffic_1,s_t_1=get_month_data(This_month):这行代码调用 get_month_data() 函数计算了本月的销售额、客流量和客单价,并将结果分别赋值给了 sales_1traffic_1s_t_1 变量。

  7. 类似地,sales_2,traffic_2,s_t_2=get_month_data(last_month)sales_3,traffic_3,s_t_3=get_month_data(same_month) 分别计算了上月和去年同期的相关指数。

  8. 最后,print(sales_1,traffic_1,s_t_1)print(sales_2,traffic_2,s_t_2)print(sales_3,traffic_3,s_t_3) 分别打印出了本月、上月和去年同期的销售额、客流量和客单价。

创建DataFrame 添加同比和环比字段

# 创建DataFrame
report=pd.DataFrame([[sales_1,sales_2,sales_3],[traffic_1,traffic_2,traffic_3],[s_t_1,s_t_2,s_t_3]],
                    columns=["本月累计","上月同期","去年同期"],index=["销售额","客流量","客单价"])
# print(report)
# 添加同比和环比字段
report["环比"]=report["本月累计"]/report["上月同期"]-1

report["同比"]=report["本月累计"]/report["去年同期"]-1

  1. report=pd.DataFrame([[sales_1,sales_2,sales_3],[traffic_1,traffic_2,traffic_3],[s_t_1,s_t_2,s_t_3]], columns=["本月累计","上月同期","去年同期"], index=["销售额","客流量","客单价"]):这行代码创建了一个DataFrame对象 report。其中:

    • [[sales_1,sales_2,sales_3],[traffic_1,traffic_2,traffic_3],[s_t_1,s_t_2,s_t_3]]:是一个二维列表,包含了本月累计、上月同期和去年同期的销售额、客流量和客单价。
    • columns=["本月累计","上月同期","去年同期"]:指定了DataFrame的列标签,分别对应本月累计、上月同期和去年同期。
    • index=["销售额","客流量","客单价"]:指定了DataFrame的行标签,分别对应销售额、客流量和客单价。
  2. report["环比"]=report["本月累计"]/report["上月同期"]-1:这行代码计算了环比,即本月累计与上月同期的销售额、客流量和客单价的增长率。

  3. report["同比"]=report["本月累计"]/report["去年同期"]-1:这行代码计算了同比,即本月累计与去年同期的销售额、客流量和客单价的增长率。

# 查看报表
report
# 将结果导出本地
report.to_csv("order.csv",encoding="utf-8-sig")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/510924.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

浅谈iOS开发中的自动引用计数ARC

1.ARC是什么 我们知道&#xff0c;在C语言中&#xff0c;创建对象时必须手动分配和释放适量的内存。然而&#xff0c;在 Swift 中&#xff0c;当不再需要类实例时&#xff0c;ARC 会自动释放这些实例的内存。 Swift 使用 ARC 来跟踪和管理应用程序的内存&#xff0c;其主要是由…

EFPN代码解读

论文 Extended Feature Pyramid Network for Small Object Detection python3 D:/Project/EFPN-detectron2-master/tools/train_net.py --config-file configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml --num-gpus 1 训练脚本 cfg 中的配置 先获取配置…

JavaWeb 项目运行配置

JavaWeb 项目运行配置

保持ssh断开后,程序不会停止执行

保持ssh断开后&#xff0c;程序不会停止执行 一、前言 笔者做远程部署搞了一阵子&#xff0c;快结项时发现一旦我关闭了ssh连接窗口&#xff0c;远程服务器会自动杀掉我在ssh连接状态下运行的程序。 这怎么行&#xff0c;岂不是想要它一直运行还得要一台电脑一直打开ssh连接咯…

【优选算法专栏】专题十六:BFS解决最短路问题---前言

本专栏内容为&#xff1a;算法学习专栏&#xff0c;分为优选算法专栏&#xff0c;贪心算法专栏&#xff0c;动态规划专栏以及递归&#xff0c;搜索与回溯算法专栏四部分。 通过本专栏的深入学习&#xff0c;你可以了解并掌握算法。 &#x1f493;博主csdn个人主页&#xff1a;小…

【QingHub】企业级应用开发管理

QingHub 企业级应用开发设计器是QingHub Studio的一个核心模块&#xff0c;它可以实现应用搭建、团队管理&#xff0c;共享开发&#xff0c;可以快速接入API接口&#xff0c;复杂功能可以通过自定义脚本快速实现业务逻辑。打通前端开发与后台业务逻辑一体化。通过可视化的方式&…

使用 PDManer 对数据库表建模(建表语句生成,代码生成)

目录 前言 基本使用教程 新建项目 创建表 关系图 建表语句 生成代码 导入 前言 在软件开发中过程中&#xff0c;一般分为几个过程&#xff1a;需求分析、概要设计、详细设计、编码实现、软件测试和软件交付。 在概要设计和详细设计过程中&#xff0c;则需要对业务进…

苍穹外卖06(HttpClient,微信小程序开发,微信登录流程,获取授权码从微信平台获取用户信息)

目录 一、HttpClient 1. 介绍 2. 入门案例 1 导入依赖(已有) 2 GET方式请求 2 POST方式请求 二、微信小程序开发 1. 介绍 2. 准备工作 1 注册小程序获取AppID 注册小程序 完善小程序信息 2 下载并安装开发者工具 3 设置小程序开发者工具(必做) 3. 入门案例 1 小…

CentOS 7 下离线安装RabbitMQ教程

CentOS 7 下安装RabbitMQ教程一、做准备&#xff08;VMWare 虚拟机上的 CentOS 7 镜像 上安装的&#xff09; &#xff08;1&#xff09;准备RabbitMQ的安装包&#xff08;rabbitmq-server-3.8.5-1.el7.noarch&#xff09;下载地址mq https://github.com/rabbitmq/rabbitmq-se…

基于51单片机的简易计算器设计

1、任务 本课题模拟计算器设计硬件电路采用三部分电路模块构成&#xff0c; 第一部分是键盘模块电路&#xff0c;采用4*4矩阵式键盘作为输入电路&#xff1b; 第二部分是LCD1602液晶显示模块&#xff1b; 第三部分是以51单片机作为控制核心。 软件程序主要由三部分组成&am…

AWS-EKS 给其他IAM赋予集群管理权限

AWS EKS 设计了权限管理系统&#xff0c;A用户创建的集群 B用户是看不到并且不能管理和使用kubectl的&#xff0c;所以我们需要共同管理集群时就需要操场共享集群访问给其他IAM用户。 两种方式添加集群控制权限&#xff08;前提&#xff1a;使用有管理权限的用户操作&#xff…

子集与全排列问题(力扣78,90,46,47)

系列文章目录 子集和全排列问题与下面的组合都是属于回溯方法里的&#xff0c;相信结合前两期&#xff0c;再看这篇笔记&#xff0c;更有助于大家对本系列的理解 一、组合回溯问题 二、组合总和问题 文章目录 系列文章目录题目子集一、思路二、解题方法三、Code 子集II一、思…

基于SSM的网上打印管理

摘要 进入二十一世纪以来&#xff0c;计算机技术蓬勃发展&#xff0c;人们的生活发生了许多变化。很多时候人们不需要亲力亲为的做一些事情&#xff0c;通过网络即可完成以往需要花费很多时间的操作&#xff0c;这可以提升人们的生活质量。计算机技术对人们生活的改变不仅仅包…

不会还有程序员不知道这几个宝藏学习平台吧?还不来码住!

咱作为程序员可谓是赶上了发展的时代啊&#xff01;前有ChatGPT&#xff0c;后有5G、物联网等等层出不穷。这正是咱大展身手、大赚一笔的好时候啊&#xff01;有多少人趁着风口期大干一笔&#xff0c;狠狠投入&#xff0c;最终不说是top级别&#xff0c;也至少是羡煞众人啊&…

最新AI智能系统ChatGPT网站源码V6.3版本,GPTs、AI绘画、AI换脸、垫图混图+(SparkAi系统搭建部署教程文档)

一、前言 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;那么如何搭建部署AI创作ChatGPT&#xff1f;小编这里写一个详细图文教程吧。已支持GPT…

[从0开始AIGC][Transformer相关]:Transformer中的激活函数:Relu、GELU、GLU、Swish

[从0开始AIGC][Transformer相关]&#xff1a;Transformer中的激活函数 文章目录 [从0开始AIGC][Transformer相关]&#xff1a;Transformer中的激活函数1. FFN 块 计算公式&#xff1f;2. GeLU 计算公式&#xff1f;3. Swish 计算公式&#xff1f;4. 使用 GLU 线性门控单元的 FF…

Redis基本配置及安装

Redis也叫Remote dictionary server,是一个开源的基于内存的数据存储系统。它可以用作数据库、缓存和消息队列等各种场景。它也是目前最热门的NoSQL数据库之一 以下是NoSQL的定义 随着互联网的快速发展&#xff0c;应用系统的访问量越来越大&#xff0c;数据库的性能瓶颈越来越…

自动驾驶中基于Transformer的传感器融合:研究综述

自动驾驶中基于Transformer的传感器融合&#xff1a;研究综述 论文链接&#xff1a;https://arxiv.org/pdf/2302.11481.pdf 调研链接&#xff1a;https://github.com/ApoorvRoboticist/Transformers-Sensor-Fusion 附赠自动驾驶学习资料和量产经验&#xff1a;链接 摘要 本…

解密JavaScript混淆:剖析JScrambler、JSFack、JShaman等五款常用加密工具

摘要 本篇技术博客将介绍五款常用且好用的在线JavaScript加密混淆工具&#xff0c;包括 jscrambler、JShaman、jsfack、freejsobfuscator 和 jjencode。通过对这些工具的功能及使用方法进行详细解析&#xff0c;帮助开发人员更好地保护和加密其 JavaScript 代码&#xff0c;提…

图的应用试题

01&#xff0e;任何一个无向连通图的最小生成树( )。 A.有一棵或多棵 B.只有一棵 C.一定有多棵 D.可能不存在 02.用Prim算法和Kruskal算法构造图的最小生成树&#xff0c;…