基于扩展(EKF)和无迹卡尔曼滤波(UKF)的电力系统动态状态估计(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 UKF

2.2 EKF 

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

摘要:准确估计电力系统动态对于提高电力系统的可靠性、韧性、安全性和稳定性非常重要。随着逆变器型分布式能源的不断集成,对电力系统动态的了解比以往任何时候都更为必要和关键,以实现电力系统的正确控制和运行。尽管最近测量设备和传输技术的进展极大地减小了测量和传输误差,但这些测量仍然不完全摆脱测量噪声的影响。因此,需要对嘈杂的测量进行滤波,以获得准确的电力系统运行动态。本文使用扩展卡尔曼滤波器(EKF)和无迹卡尔曼滤波器(UKF)来估计电力系统的动态状态。我们对西部电力协调委员会(WECC)的3机9节点系统和新英格兰的10机39母线系统进行了案例研究。结果表明,UKF和EKF能够准确地估计电力系统的动态。本文还提供了对测试案例的EKF和UKF的比较性能。其他基于卡尔曼滤波技术和机器学习的估计器的信息将很快在本报告中更新。

关键词:扩展卡尔曼滤波(EKF)、电力系统动态状态估计、无迹卡尔曼滤波(UKF)。

原文摘要:

Abstract—Accurate estimation of power system dynamics is very important for the enhancement of power system relia-bility, resilience, security, and stability of power system. With the increasing integration of inverter-based distributed energy resources, the knowledge of power system dynamics has become more necessary and critical than ever before for proper control and operation of the power system. Although recent advancement of measurement devices and the transmission technologies have reduced the measurement and transmission error significantly, these measurements are still not completely free from the mea- surement noises. Therefore, the noisy measurements need to be filtered to obtain the accurate power system operating dynamics. In this work, the power system dynamic states are estimated using extended Kalman filter (EKF) and unscented Kalman filter (UKF). We have performed case studies on Western Electricity Coordinating Council (WECC)’s 3-machine 9-bus system and New England 10-machine 39-bus. The results show that the UKF and EKF can accurately estimate the power system dynamics. The comparative performance of EKF and UKF for the tested case is also provided. Other Kalman filtering techniques along
with the machine learning based estimator will be updated in this report soon. All the sources code including Newton Raphson power flow, admittance matrix calculation, EKF calculation, and
UKF calculation are publicly available in Github on Power System Dynamic State Estimation.
Index Terms—Extended Kalman filter (EKF), power system dynamic state estimation, and unscented Kalman filter (UKF).

📚2 运行结果

2.1 UKF

 

 

 

 

2.2 EKF 

 

 

 

 

部分代码:

% Covariance Matrix
sig=1e-2; 
P=sig^2*eye(ns);  % Error covariance matrix 
Q=sig^2*eye(ns); % system noise covariance matrix 
R=sig^2*eye(nm); % measurment noise covariance matrix 

X_hat=X_0;
X_est=[]; 
X_mes=[]; % Initial statel 

% constant values 

RMSE=[];

%Extended Kalman Filter (EKF) ALgorithm 
for k=0:deltt:t_max
    % Ybus and reconstruction matrix accodring to the requirement
    if k<t_SW
        ps=1;
    elseif (t_SW<k)&&(k<=t_FC)
        ps=2;  
    else 
        ps=3; 
    end  
    
    Ybusm = YBUS(:,:,ps);
    RVm=RV(:, :, ps);
    
    [~, X] = ode45(@(t,x) dynamic_system(t,x,M,D,Ybusm,E_abs,PM,n),[k k+deltt],X_0);
    
    X_0=transpose(X(end, :));
    X_mes=[X_mes X_0];
    
    %determine the measurements 
    E1=E_abs.*exp(1j*X_0(1:n)); 
    I1=Ybusm*E1; 
    PG=real(E1.*conj(I1)); 
    QG=imag(E1.*conj(I1)); 
    Vmag=abs(RVm*E1); 
    Vangle=angle(RVm*E1); 
    z=[PG; QG; Vmag; Vangle]; 
    
    % determine Phi=df/fx 
    Phi=RK4partial(E_abs, X_hat, Ybusm, M, deltt, D, n);
    
    %prediction 
%     [~, X1]= ode45(@(t,x) dynamic_system(t,x,M,D,Ybusm,E_abs,PM,n),[k k+deltt],X_hat);
%     X_hat=transpose(X1(end, :));
    
    X_hat=RK4(n, deltt, E_abs, ns, X_hat, PM, M, D, Ybusm); 
    P=Phi*P*transpose(Phi)+Q;
    
    % correction 
    [H, zhat]=RK4H(E_abs, X_hat, Ybusm, s,n, RVm) ; 
    
    % Measurement update of state estimate and estimation error covariance 
    K=P*transpose(H)*(H*P*transpose(H)+R);
    X_hat=X_hat+K*(z-zhat); 
    P=(eye(ns)-K*H)*P; 
    
     
    X_est=[X_est, X_hat];  
    RMSE=[RMSE, sqrt(trace(P))];
end 

save('39_RMSE_EKF.mat', 'RMSE')


%% Plots
t= (0:deltt:t_max);
for i=1:1:n
figure(i)
subplot(2,1,1)
plot(t,X_mes(i, :), 'linewidth', 1.5)
hold on 
plot(t, X_est(i, :), 'linestyle', '--', 'color', 'r', 'linewidth', 2);
grid on
ylabel(sprintf('Angle_{%d}', i), 'fontsize', 12)
xlabel('time(s)', 'fontsize', 15); 
title('Actual Vs Estimated \delta', 'fontsize', 12)
legend(sprintf('Angle_{%d, Actual} ',i), sprintf('Angle_{%d, EKF}', i)); 

subplot(2,1,2)
plot(t,X_mes(i+n, :), 'linewidth', 1.5)
hold on 
plot(t, X_est(i+n, :), 'linestyle', '--', 'color', 'r', 'linewidth', 2);
grid on
ylabel(sprintf('Speed_{%d}', i), 'fontsize', 12)
xlabel('time(s)', 'fontsize', 15); 
title('Actual Vs Estimated \omega', 'fontsize', 12)
legend(sprintf('Speed_{%d, Actual} ',i), sprintf('Speed_{%d, EKF}', i));

% subplot(2,2,3)
% plot(t,X_mes(i+1, :), 'linewidth', 1.5)
% hold on 
% plot(t, X_est(i+1, :), 'linestyle', '--', 'color', 'r', 'linewidth', 2);
% grid on
% ylabel(sprintf('Angle_{%d}', i+1), 'fontsize', 12)
% xlabel('time(s)', 'fontsize', 15); 
% title('Measured Vs Eistimated \delta', 'fontsize', 12)

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/51031.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

k8s中强制删除pv

K8s 集群内有一个已经不再使用的 PV&#xff0c;虽然已经删除了与其关联的 Pod 及 PVC&#xff0c;并对其执行了删除命令&#xff0c;但仍无法正常删除&#xff0c;一直处于 Terminating 状态&#xff1a; 解决办法&#xff1a; 1. 获取pv信息 kubectl get pv 2. 解除pv锁定 …

2023/7/29总结

项目&#xff1a; 这几天主要实现了评论的功能点: 还是有点小bug&#xff0c;还在更改中…… 修改个人中心的界面 接下来是把收藏完善&#xff0c;因为收藏需要用户自己创建一个新的收藏夹

JAVA 正则表达式(heima)

JAVA 正则表达式&#xff08;heima&#xff09; public class RegexDemo01 {/** 正则表达式介绍&#xff1a;本质来说就是一个字符串&#xff0c;字符串中可以指定规则&#xff0c;来对其他字符串进行校验。* public boolean matches(String regex):根据传入的正则表达式&#…

matplotlib绘图中可选标记

文章目录 简介所有可用的绘图标记绘图函数标记绘制 简介 前面的博客简要介绍了matplotlib中的绘图标记&#xff0c;并列举出了部分可用标记点的类型&#xff0c;并画了个图作为示例&#xff0c;如下图下表所示。本文则将所有标记点的类型均绘制一遍 字符类型字符类型字符类型…

基于springboot+mybatis+thymeleaf+html产品销售与分析系统

基于springbootmybatisthymeleafhtml产品销售与分析系统 一、系统介绍二、功能展示1.下单(批发商)2.订单管理&#xff08;批发商&#xff09;3.首页(厂家管理员)4.订单管理&#xff08;厂家管理员&#xff09;5.商品管理&#xff08;厂家管理员&#xff09;6.统计分析&#xff…

【深度学习】InST,Inversion-Based Style Transfer with Diffusion Models,论文

代码&#xff1a;https://github.com/zyxElsa/InST 论文&#xff1a;https://arxiv.org/abs/2211.13203 文章目录 AbstractIntroductionRelated WorkImage style transferText-to-image synthesisInversion of diffusion models MethodOverview ExperimentsComparison with Sty…

记录每日LeetCode 141.环形链表 Java实现

题目描述&#xff1a; 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整数 pos 来表示链表尾连接到链…

【面试大题】决策树

决策树知识点 ID3 规则——信息增益&#xff08;基于熵&#xff09; 先计算根结点的信息熵 H ( D ) − ∑ k 1 ∣ Y ∣ p k log ⁡ p k H(D)-\sum_{k1}^{|Y|}{p_k\log{p_k}} H(D)−∑k1∣Y∣​pk​logpk​再计算根据某特征分割之后的条件熵 H ( D ∣ f e a t u r e ) ∑…

iOS - 解压ipa包中的Assert.car文件

项目在 Archive 打包后&#xff0c;生成ipa包 将 xxx.ipa文件修改为zip后缀即 xxx.zip &#xff0c;然后再双击解压&#xff0c;会生成一个 Payload 文件夹&#xff0c;里面一个文件 如下图&#xff1a; 然后显示改文件的包内容&#xff1a; 解压 Assets.car 文件的方式&…

Appium+python自动化(二十二)- 控件坐标获取(超详解)

简介 有些小伙伴或者是童鞋可能会好奇会问上一篇中的那个monkey脚本里的坐标点是如何获取的&#xff0c;不是自己随便蒙的猜的&#xff0c;或者是自己用目光或者是尺子量出来的吧&#xff0c;答案当然是&#xff1a;NO。获取控件坐标点的方式这里宏哥给小伙伴们分享和讲解三种方…

C#时间轴曲线图形编辑器开发2-核心功能实现

目录 三、关键帧编辑 1、新建Winform工程 &#xff08;1&#xff09;界面布局 &#xff08;2&#xff09;全局变量 2、关键帧添加和删除 &#xff08;1&#xff09;鼠标在曲线上识别 &#xff08;2&#xff09;键盘按键按下捕捉 &#xff08;3&#xff09;关键帧添加、删…

全面适配 | 走近openGauss数据库+鲲鹏欧拉操作系统

引入 全面适配 | openEuler操作系统 openGauss数据库 开篇 1、openEuler欧拉操作系统 百度百科&#xff1a;openEuler是覆盖全场景的创新平台&#xff0c;在引领内核创新&#xff0c;夯实云化基座的基础上&#xff0c;面向计算架构互联总线、存储介质发展新趋势&#xff0c;…

某渣渣平台APP登录

准备 APP有壳----360的好像是&#xff0c;懒得回头再看了加密参数sign、password 过程就略过吧&#xff01;此处只展示结果

win10 hadoop报错 unable to load native-hadoop library

win10 安装hadoop执行hdfs -namenode format 和运行hadoop的start-all报错 unable to load native-hadoop library 验证&#xff1a; hadoop checknative -a 这个命令返回都是false是错的 返回下图是正确的 winutils: true D:\soft\hadoop-3.0.0\bin\winutils.exe Native li…

STM32MP157驱动开发——按键驱动(定时器)

内核函数 定时器涉及函数参考内核源码&#xff1a;include\linux\timer.h 给定时器的各个参数赋值&#xff1a; setup_timer(struct timer_list * timer, void (*function)(unsigned long),unsigned long data)&#xff1a;设置定时器&#xff1a;主要是初始化 timer_list 结…

CentOS7系统Nvidia Docker容器基于TensorFlow2.12测试GPU

CentOS7系统Nvidia Docker容器基于TensorFlow1.15测试GPU 参考我的另一篇博客 1. 安装NVIDIA-Docker的Tensorflow2.12.0版本 1. 版本依赖对应关系&#xff1a;从源代码构建 | TensorFlow GPU 版本Python 版本编译器构建工具cuDNNCUDAtensorflow-2.6.03.6-3.9GCC 7.3.1Ba…

F5 LTM 知识点和实验 4-持久化

第四章:持久化 持久化: 大多数应用都是有状态的,比如,使用一个购物网站,最重要的是用户在放入一个商品之后,刷新网页要能继续看到购物车里的东西,这就需要请求报文发到同一个后端服务器上,持久化就能完成这个功能。 持久化支持一下几种场景: 源地址目标地址SSLSIPH…

最后的组合:K8s 1.24 基于 Hekiti 实现 GlusterFS 动态存储管理实践

前言 知识点 定级&#xff1a;入门级GlusterFS 和 Heketi 简介GlusterFS 安装部署Heketi 安装部署Kubernetes 命令行对接 GlusterFS 实战服务器配置(架构 1:1 复刻小规模生产环境&#xff0c;配置略有不同) 主机名IPCPU内存系统盘数据盘用途ks-master-0192.168.9.912450100…

基于Open3D的点云处理0-测试所用数据下载

地址&#xff1a;github 20220201-data 20220301-data

Flutter 使用texture_rgba_renderer实现桌面端渲染视频

Flutter视频渲染系列 第一章 Android使用Texture渲染视频 第二章 Windows使用Texture渲染视频 第三章 Linux使用Texture渲染视频 第四章 全平台FFICustomPainter渲染视频 第五章 Windows使用Native窗口渲染视频 第六章 桌面端使用texture_rgba_renderer渲染视频&#xff08;本…