书生·浦语大模型开源体系(二)笔记

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢迎在文章下方留下你的评论和反馈。我期待着与你分享知识、互相学习和建立一个积极的社区。谢谢你的光临,让我们一起踏上这个知识之旅!
请添加图片描述

文章目录

  • 🍋1. 部署 InternLM2-Chat-1.8B 模型进行智能对话
  • 🍋2. 部署实战营优秀作品 八戒-Chat-1.8B 模型
  • 🍋3. 使用 Lagent 运行 InternLM2-Chat-7B 模型
  • 🍋4. 实践部署 浦语·灵笔2 模型
  • 🍋总结

🍋1. 部署 InternLM2-Chat-1.8B 模型进行智能对话

首先,打开 Intern Studio 界面,点击 创建开发机 配置开发机系统。
在这里插入图片描述
之后进入,点击终端输入环境配置命令

studio-conda -o internlm-base -t demo
# 与 studio-conda 等效的配置方案
# conda create -n demo python==3.10 -y
# conda activate demo
# conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia

配置完成后,进入到新创建的 conda 环境之中:

conda activate demo

输入以下命令,完成环境包的安装:

pip install huggingface-hub==0.17.3
pip install transformers==4.34 
pip install psutil==5.9.8
pip install accelerate==0.24.1
pip install streamlit==1.32.2 
pip install matplotlib==3.8.3 
pip install modelscope==1.9.5
pip install sentencepiece==0.1.99

下载 InternLM2-Chat-1.8B 模型
按路径创建文件夹,并进入到对应文件目录中:

mkdir -p /root/demo
touch /root/demo/cli_demo.py
touch /root/demo/download_mini.py
cd /root/demo

通过左侧文件夹栏目,双击进入 demo 文件夹。

双击打开 /root/demo/download_mini.py 文件,复制以下代码:

import os
from modelscope.hub.snapshot_download import snapshot_download

# 创建保存模型目录
os.system("mkdir /root/models")

# save_dir是模型保存到本地的目录
save_dir="/root/models"

snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b", 
                  cache_dir=save_dir, 
                  revision='v1.1.0')

执行命令,下载模型参数文件:

python /root/demo/download_mini.py

运行 cli_demo
双击打开 /root/demo/cli_demo.py 文件,复制以下代码:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


model_name_or_path = "/root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""

messages = [(system_prompt, '')]

print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")

while True:
    input_text = input("\nUser  >>> ")
    input_text = input_text.replace(' ', '')
    if input_text == "exit":
        break

    length = 0
    for response, _ in model.stream_chat(tokenizer, input_text, messages):
        if response is not None:
            print(response[length:], flush=True, end="")
            length = len(response)

输入命令,执行 Demo 程序:

conda activate demo
python /root/demo/cli_demo.py

等待模型加载完成,之后就可以输入内容进行创作了

🍋2. 部署实战营优秀作品 八戒-Chat-1.8B 模型

简单介绍 八戒-Chat-1.8B、Chat-嬛嬛-1.8B、Mini-Horo-巧耳(实战营优秀作品)
八戒-Chat-1.8B、Chat-嬛嬛-1.8B、Mini-Horo-巧耳 均是在第一期实战营中运用 InternLM2-Chat-1.8B 模型进行微调训练的优秀成果。其中,八戒-Chat-1.8B 是利用《西游记》剧本中所有关于猪八戒的台词和语句以及 LLM API 生成的相关数据结果,进行全量微调得到的猪八戒聊天模型。作为 Roleplay-with-XiYou 子项目之一,八戒-Chat-1.8B 能够以较低的训练成本达到不错的角色模仿能力,同时低部署条件能够为后续工作降低算力门槛。

当然,同学们也可以参考其他优秀的实战营项目,具体模型链接如下:
八戒-Chat-1.8B:https://www.modelscope.cn/models/JimmyMa99/BaJie-Chat-mini/summary
Chat-嬛嬛-1.8B:https://openxlab.org.cn/models/detail/BYCJS/huanhuan-chat-internlm2-1_8b
Mini-Horo-巧耳:https://openxlab.org.cn/models/detail/SaaRaaS/Horowag_Mini

配置基础环境
运行环境命令:

conda activate demo

使用 git 命令来获得仓库内的 Demo 文件:

cd /root/
git clone https://gitee.com/InternLM/Tutorial -b camp2
# git clone https://github.com/InternLM/Tutorial -b camp2
cd /root/Tutorial

下载运行 Chat-八戒 Demo
在 Web IDE 中执行 bajie_download.py:

python /root/Tutorial/helloworld/bajie_download.py

待程序下载完成后,输入运行命令:

streamlit run /root/Tutorial/helloworld/bajie_chat.py --server.address 127.0.0.1 --server.port 6006

待程序运行的同时,对端口环境配置本地 PowerShell 。使用快捷键组合 Windows + R(Windows 即开始菜单键)打开指令界面,并输入命令,按下回车键。(Mac 用户打开终端即可)

打开 PowerShell 后,先查询端口,再根据端口键入命令 (例如图中端口示例为 38374):

# 从本地使用 ssh 连接 studio 端口
# 将下方端口号 38374 替换成自己的端口号
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 38374

再复制下方的密码,输入到 password 中,直接回车
打开 http://127.0.0.1:6006 后,等待加载完成即可进行对话。

🍋3. 使用 Lagent 运行 InternLM2-Chat-7B 模型

Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。

Lagent 的特性总结如下:

  • 流式输出:提供 stream_chat 接口作流式输出,本地就能演示酷炫的流式 Demo。
    接口统一,设计全面升级,提升拓展性,包括:
  • Model : 不论是 OpenAI API, Transformers 还是推理加速框架 LMDeploy 一网打尽,模型切换可以游刃有余;
  • Action: 简单的继承和装饰,即可打造自己个人的工具集,不论 InternLM 还是 GPT 均可适配;
  • Agent:与 Model 的输入接口保持一致,模型到智能体的蜕变只需一步,便捷各种 agent 的探索实现;
  • 文档全面升级,API 文档全覆盖。

配置基础环境(开启 30% A100 权限后才可开启此章节)
打开 Intern Studio 界面,调节配置(必须在开发机关闭的条件下进行):
重新开启开发机,输入命令,开启 conda 环境:

conda activate demo

打开文件子路径

cd /root/demo

使用 git 命令下载 Lagent 相关的代码库:

git clone https://gitee.com/internlm/lagent.git
# git clone https://github.com/internlm/lagent.git
cd /root/demo/lagent
git checkout 581d9fb8987a5d9b72bb9ebd37a95efd47d479ac
pip install -e . # 源码安装

使用 Lagent 运行 InternLM2-Chat-7B 模型为内核的智能体
Intern Studio 在 share 文件中预留了实践章节所需要的所有基础模型,包括 InternLM2-Chat-7b 、InternLM2-Chat-1.8b 等等。我们可以在后期任务中使用 share 文档中包含的资源,但是在本章节,为了能让大家了解各类平台使用方法,还是推荐同学们按照提示步骤进行实验。

打开 lagent 路径:

cd /root/demo/lagent

在 terminal 中输入指令,构造软链接快捷访问方式:

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b

打开 lagent 路径下 examples/internlm2_agent_web_demo_hf.py 文件,并修改对应位置 (71行左右) 代码:

# 其他代码...
value='/root/models/internlm2-chat-7b'
# 其他代码...

输入运行命令 - 点开 6006 链接后,大约需要 5 分钟完成模型加载:

streamlit run /root/demo/lagent/examples/internlm2_agent_web_demo_hf.py --server.address 127.0.0.1 --server.port 6006

待程序运行的同时,对本地端口环境配置本地 PowerShell 。使用快捷键组合 Windows + R(Windows 即开始菜单键)打开指令界面,并输入命令,按下回车键。(Mac 用户打开终端即可)
打开 PowerShell 后,先查询端口,再根据端口键入命令 (例如图中端口示例为 38374):

# 从本地使用 ssh 连接 studio 端口
# 将下方端口号 38374 替换成自己的端口号
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 38374

后面依次是输入密码,之后就可以直接访问了

🍋4. 实践部署 浦语·灵笔2 模型

初步介绍 XComposer2 相关知识
浦语·灵笔2 是基于 书生·浦语2 大语言模型研发的突破性的图文多模态大模型,具有非凡的图文写作和图像理解能力,在多种应用场景表现出色,总结起来其具有:

  • 自由指令输入的图文写作能力: 浦语·灵笔2 可以理解自由形式的图文指令输入,包括大纲、文章细节要求、参考图片等,为用户打造图文并貌的专属文章。生成的文章文采斐然,图文相得益彰,提供沉浸式的阅读体验。
  • 准确的图文问题解答能力:浦语·灵笔2 具有海量图文知识,可以准确的回复各种图文问答难题,在识别、感知、细节描述、视觉推理等能力上表现惊人。
  • 杰出的综合能力: 浦语·灵笔2-7B 基于 书生·浦语2-7B 模型,在13项多模态评测中大幅领先同量级多模态模型,在其中6项评测中超过 GPT-4V 和 Gemini Pro。

配置基础环境(开启 50% A100 权限后才可开启此章节)

选用 50% A100 进行开发:

进入开发机,启动 conda 环境:

conda activate demo
# 补充环境包
pip install timm==0.4.12 sentencepiece==0.1.99 markdown2==2.4.10 xlsxwriter==3.1.2 gradio==4.13.0 modelscope==1.9.5

下载 InternLM-XComposer 仓库 相关的代码资源:

cd /root/demo
git clone https://gitee.com/internlm/InternLM-XComposer.git
# git clone https://github.com/internlm/InternLM-XComposer.git
cd /root/demo/InternLM-XComposer
git checkout f31220eddca2cf6246ee2ddf8e375a40457ff626

在 terminal 中输入指令,构造软链接快捷访问方式:

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-7b /root/models/internlm-xcomposer2-7b
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-vl-7b /root/models/internlm-xcomposer2-vl-7b

图文写作实战(开启 50% A100 权限后才可开启此章节)
继续输入指令,用于启动 InternLM-XComposer:

cd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_composition.py  \
--code_path /root/models/internlm-xcomposer2-7b \
--private \
--num_gpus 1 \
--port 6006

待程序运行的同时,参考章节 3.3 部分对端口环境配置本地 PowerShell 。步骤雷同

图片理解实战(开启 50% A100 权限后才可开启此章节)
根据附录 6.4 的方法,关闭并重新启动一个新的 terminal,继续输入指令,启动 InternLM-XComposer2-vl:

conda activate demo

cd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_chat.py  \
--code_path /root/models/internlm-xcomposer2-vl-7b \
--private \
--num_gpus 1 \
--port 6006

打开 http://127.0.0.1:6006 (上传图片后) 键入内容示例如下:
请分析一下图中内容即可

🍋总结

原文地址如下:https://github.com/InternLM/Tutorial/blob/camp2/helloworld/hello_world.md

在这里插入图片描述

挑战与创造都是很痛苦的,但是很充实。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/509729.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Vscode】无法将“python,pip,node,npm等”识别为cmdlet...问题

问题出现场景 新换个电脑,然后重新安装了软件,又复现一次又一次“老生常谈”的问题。 解决方法 网络答案吧五花八门,我采取一个我的场景解决可行的方案, 首先我的场景是,环境变量,配置路径都是没有问题…

super关键字的使用总结

一、super关键字的使用1. 为什么需要super?举例1:子类继承父类以后,对父类的方法进行了重写,那么在子类中,是否还可以对父类中被重写的方法进行调用? 可以!举例2:子类继承父类以后&a…

ice-06 运用Burp-Suite进行暴力破解(攻防世界)

ice-06 步骤一:点击超链接,发现只有报表中心才有用。 步骤二:点进去发现输入日期范围没有用 步骤三:使用Burp Suite进行抓包,把值传到Action到Intruder中 步骤四:如图所示进行配置 步骤五:攻击…

13.2k star, 高生产力的低代码开发平台 lowcode-engine

13.2k star, 高生产力的低代码开发平台 lowcode-engine 分类 开源分享 项目名: lowcode-engine -- 高生产力的低代码研发平台 Github 开源地址: GitHub - alibaba/lowcode-engine: An enterprise-class low-code technology stack with scale-out design / 一套面…

【滤波器基础】卡尔曼滤波器

滤波器基础 为了进一步抑制高频噪声,科研人员也会采用一些高阶低通滤波器来对电流采样信号的高频噪声进行抑制,常用的一种滤波器为:巴特沃兹滤波器。除了这种滤波器,也存在如贝塞尔、切比雪夫滤波器等。 巴特沃斯滤波器 在线性控…

【御控物联】JavaScript JSON结构转换(15):对象To数组——转换映射方式

文章目录 一、JSON结构转换是什么?二、术语解释三、案例之《JSON对象 To JSON数组》四、代码实现五、在线转换工具六、技术资料 一、JSON结构转换是什么? JSON结构转换指的是将一个JSON对象或JSON数组按照一定规则进行重组、筛选、映射或转换&#xff0…

服务器托管让服务器管理更轻松高效

在信息化飞速发展的今天,服务器作为企业数据处理和信息存储的核心设备,其管理的重要性日益凸显。服务器托管,作为一种高效、专业的服务器管理方式,正逐渐成为众多企业的首选。那么,服务器托管究竟是如何让服务器管理更…

10个最佳3D角色下载站

每个人都喜欢免费的东西。 无论是免费的 3D 角色还是游戏资产,我们都喜欢它们。 以下是可以为你的游戏获取免费 3D 角色的前 10 个网站的列表。 你可以将它们用于多种用途,例如 3D 打印或动画剪辑。 如果需要将下载的3D角色转化为其他格式,可…

面具下的flag【杂项】

知识点: binwalk 检测文件是否合并binwalk -e 文件名 将文件进行剥离,自动解压出压缩包中的文件vmdk文件是可以进行解压的 7z x 文件 -o./vmdk是linux文件,需要在linux中进行解压,看了别人的wp发现在window中解压是没有关键信息…

智能化最积极的海尔,对大模型不着急了

文|刘俊宏 AI改变终端的时代,最早投入智能化的家电公司表现怎么样? 3月27日晚间,海尔智家(下简称海尔)发布其2023年报。财报显示,2023年海尔智家营收2614.28亿元,同比增长7.33%&am…

把组合损失中的权重设置为可学习参数

目前的需求是:有一个模型,准备使用组合损失,其中有2个或者多个损失函数。准备对其进行加权并线性叠加。但想让这些权重进行自我学习,更新迭代成最优加权组合。 目录 1、构建组合损失类 2、调用组合损失类 3、为其构建优化器 …

filebeat日常使用.

先决条件(已经安装好filebeatelasticsearch) 详情可以参考官网,或者 虚拟机部署elasticsearch集群-CSDN博客 centos7 使用rpm包部署filebeat-CSDN博客 filebeat配置文件 标准输入console输出 (1)编写测试的配置⽂件 mkdir /etc/filebeat/config [rootelk101 /tmp]$vim /et…

练习 15 Web [极客大挑战 2019]Knife

因为没有按顺序刷题,这道送分题 要知道两个点 1.什么是“一句话木马” 2.什么是“菜刀” or“蚁剑” 蚁剑连接就行 flag{1b894a2d-8df1-4b06-9054-e90d73257006}

春季养生从睡眠开始

睡眠可以缓解疲劳,恢复精神状态。特别是在春季,调整好睡眠对于养生是很有好处的,HUAWEI WATCH GT 4 系列用更科学的睡眠监测、管理与改善,守护你的好梦。

js 基础知识 forEach 和 map 的区别,及 map 不加 return 返回什么

问题一:forEach 和 map 之间的区别: 1、forEach 不返回新数组,map 返回新数组,其中包含回调函数的返回值。 2、用途:如果只想要遍历数组并对每个元素执行某些操作而不产生新数组,那么应该使用 forEach&am…

Selinux安全策略文件

在Selinux框架中,安全策略都是写在te文件中,以adb.te 文件为例 allow adbd shell_data_file:dir create_dir_perms;策略的基本格式是: rule_name source_type target_type :object_class perm_setrule_name 规则名。常见的规则名有allow,ne…

异常,Lambda表达式

文章目录 异常介绍存在形式程序中异常发生后的第一反应体系JVM的默认处理方案处理方式声明 throws概述格式抛出 throw格式注意意义 throws和throw的区别 捕获 try,catch介绍格式执行方式多异常捕获处理意义 如何选择用哪个 Throwable类介绍常用方法 自定义异常概述实现步骤范例…

论文阅读RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection

文章目录 RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection问题笛卡尔坐标结构图Meta-Kernel Convolution RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection 论文:https://arxiv.org/pdf/2103.10039.pdf 代码&…

docker--部署 (超详版) (五)

环境准备:docker,mysql,redis,镜像,nginx 把虚拟机打开,连接xshell,参考博客: https://blog.csdn.net/m0_74229802/article/details/136965820?spm1001.2014.3001.5501 一&#x…

什么是过载

宇航员相关知识会涉及到过载,导弹相关知识也会涉及到过载,如导弹的过载加速度,什么是过载呢?博主从B站上看到一UP主讲的很好, 该up主视频链接: 过载是什么_哔哩哔哩_bilibili 内容截图如下: