算法——矩阵,被围绕的区域

. - 力扣(LeetCode)

最开始也是考虑使用dfs,对于矩阵中的每个点,如果能到达边界的O,则跳过继续dfs。否则如果上下左右四个方向都无法到达边界的O,则说明当前的无法到达,在一个set中记录他的行数列数。

最后对每个记录的点标记为X即可。

但是有问题,首先可能会出现永久递归无法跳出来。如果使用父节点记录当前节点的前一个节点,则如果父节点恰好通往边界O,会导致错误。使用visited来记录状态也不行。

应该反向思维,从每个边界O出发dfs。

思路:对于边界上的每一个点进行dfs。如果当前点为X则直接跳过。如果当前点为O,则把O该为A,继续dfs。

使用A来记录从边界上的O所能够到达的点。

遍历完之后,再把矩阵中的O改为X,表示未与边界O相连。把矩阵中的A该为O,表示与边界相连的O,不变。

注意dfs函数中,如果发现不是X不能直接else,而要判断是不是为O,为O才继续dfs。

如果不这样的话当前为A也会继续dfs,导致永远无法停止的递归。

class Solution {
public:

    void dfs(vector<vector<char>>& board,int row,int col)
    {
        if(board[row][col]=='X')return;
        else if(board[row][col]=='O')
        {
            board[row][col]='A';
            if(row>0)dfs(board,row-1,col);
            if(row<board.size()-1)dfs(board,row+1,col);
            if(col>0)dfs(board,row,col-1);
            if(col<board[0].size()-1)dfs(board,row,col+1);
        }
    }
    void solve(vector<vector<char>>& board) {
        for(int i=0;i<board.size();i++)
        {
            dfs(board,i,0);
            dfs(board,i,board[0].size()-1);
        }
        for(int i=1;i<board[0].size()-1;i++)
        {
            dfs(board,0,i);
            dfs(board,board.size()-1,i);
        }
        for(int i=0;i<board.size();i++)
        {
            for(int j=0;j<board[0].size();j++)
            {
                if(board[i][j]=='O')board[i][j]='X';
                else if(board[i][j]=='A')board[i][j]='O';
            }
        }
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/509684.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AcWing刷题-游戏

游戏 DP l lambda: [int(x) for x in input().split()]n l()[0] w [0] while len(w) < n:w l()s [0] * (n 1) for i in range(1, n 1): s[i] s[i - 1] w[i]f [[0] * (n 1) for _ in range(n 1)]for i in range(1, n 1): f[i][i] w[i]for length in range(2, …

WordPress外贸建站Astra免费版教程指南(2024)

在WordPress的外贸建站主题中&#xff0c;有许多备受欢迎的主题&#xff0c;如Avada、Astra、Hello、Kadence等最佳WordPress外贸主题&#xff0c;它们都能满足建站需求并在市场上广受认可。然而&#xff0c;今天我要介绍的是一个不断颠覆建站人员思维的黑马——Astra主题。 原…

Java

1.学生和老师都会有work方法&#xff0c;学生的工作是学习&#xff0c;老师的工作是教书&#xff0c;我利用了一个接口来实现&#xff1b; 2.同时&#xff0c;老师和学生都是人&#xff0c;并且都有姓名&#xff0c;姓名&#xff0c;年龄和身高等特征&#xff0c;我用了一个继承…

Python基于PyQt5制作的一个上位机软件,用来控制一个Arduino四自由度机械臂

PyQt_Arduino 介绍 用PyQt5制作的一个上位机软件&#xff0c;用来控制一个Arduino四自由度机械臂。当然&#xff0c;为了扩展的需要&#xff0c;界面是按照六自由度机械臂制作的。 开发环境 系统&#xff1a; windows10 处理器: Intel Core™i7-8550U CPU 1.8GHz 2.00GHz …

服务器远程桌面连接不上怎么办?

随着互联网的发展和远程办公的兴起&#xff0c;服务器远程桌面连接成为了许多企业和个人不可或缺的工具。偶尔我们可能会碰到服务器远程桌面连接不上的情况&#xff0c;这时候我们需要找到解决办法&#xff0c;确保高效地远程访问服务器。 天联组网——突破远程连接障碍 在我们…

isaacgym 渲染黑屏

问题描述&#xff1a; isaacgym安装完IsaacGym_Preview_4_Package.tar.gz之后&#xff0c;运行python joint_monkey.py没有任何内容现实&#xff0c;但是终端还是正常输出信息。 环境是ubuntu22服务器&#xff0c;python3.8&#xff0c;nvidia Driver Version: 515.65.01 CUDA…

Linux shell编程学习笔记45:uname命令-获取Linux系统信息

0 前言 linux 有多个发行版本&#xff0c;不同的版本都有自己的版本号。 如何知道自己使用的Linux的系统信息呢&#xff1f; 使用uname命令、hostnamectl命令&#xff0c;或者通过查看/proc/version文件来了解这些信息。 我们先看看uname命令。 1 uname 命令的功能和格式 …

如何合理利用chatgpt写高质量新闻稿,10分钟速成(五)

演示站点&#xff1a; https://www.cnsai.net/ 论文模块 官方论坛&#xff1a; www.jingyuai.com 京娱AI下载源码 人工智能&#xff08;AI&#xff09;技术作为当今科技创新的前沿领域&#xff0c;为创业者提供了广阔的机会和挑战。随着AI技术的快速发展和应用领域的不断拓展&a…

大模型之路2:继续趟一条小路

继续趟一条小路&#xff0c;可谓是充满了曲折&#xff0c;当然&#xff0c;必不可少的还是坑。 吐槽 看过的喷友&#xff0c;其实你看完以后&#xff0c;大概率也就是和我一起骂骂街&#xff0c;因为....我也的确没理清楚。 我也不知道做错了什么&#xff0c;就是运行不过去…

探索 ZKFair 的Dargon Slayer蓝图,解锁新阶段的潜力

在当前区块链技术的发展中&#xff0c;Layer 2&#xff08;L2&#xff09;解决方案已成为提高区块链扩容性、降低交易成本和提升交易速度的关键技术&#xff0c;但它仍面临一些关键问题和挑战&#xff0c;例如用户体验的改进、跨链互操作性、安全性以及去中心化程度。在这些背景…

马上蓝桥了,干货总结基础树论知识点

目录 今日知识点&#xff1a;对于每个子树如果和小于0就返回0&#xff1b;如果大于0就直接返回。 注意异或的性质&#xff0c;偶消奇不消&#xff0c;所以lca上面的都消掉了&#xff0c;并不需要跑lca&#xff0c;也就是说只需要把根到所有点的距离跑出来即可 如果上传过来小…

Redis如何实现分布式锁,单机Redis与集群Redis问题解决方案

场景1&#xff1a;在单机场景下&#xff0c;可以通过同步锁进行加锁 在单机系统下&#xff0c;该场景是适用的&#xff0c;所有的线程都需要等待同步锁释放 场景2&#xff1a;分布式场景下的分布式锁 场景1中的代码不适用与分布式系统&#xff0c;因为上述的同步锁是JVM层次的…

如何在CentOS安装StackEdit Markdown编辑器并实现无公网IP远程访问使用

最近&#xff0c;我发现了一个超级强大的人工智能学习网站。它以通俗易懂的方式呈现复杂的概念&#xff0c;而且内容风趣幽默。我觉得它对大家可能会有所帮助&#xff0c;所以我在此分享。点击这里跳转到网站。 文章目录 前言1. ubuntu安装VNC2. 设置vnc开机启动3. windows 安…

从零开始构建gRPC的Go服务

介绍 Protocol Buffers and gRPC是用于定义通过网络有效通信的微服务的流行技术。许多公司在Go中构建gRPC微服务&#xff0c;发布了他们开发的框架&#xff0c;本文将从gRPC入门开始&#xff0c;一步一步构建一个gRPC服务。 背景 之前在B站看过一个gRPC教学视频&#xff0c;…

朵米3.5客服系统源码,附带系统搭建教程

朵米客服系统是一款全功能的客户服务解决方案&#xff0c;提供多渠道支持&#xff08;如在线聊天、邮件、电话等&#xff09;&#xff0c;帮助企业建立与客户的实时互动。该系统具有智能分流功能&#xff0c;可以快速将客户请求分配给适当的客服人员&#xff0c;提高工作效率。…

操作系统:浅谈文件系统

目录 1.理解文件系统 1.1.从磁盘开始的抽象存储结构 ​编辑 1.2.操作系统下的文件管理 1.2.1.知识储备 1.2.2.存储文件的属性 1.2.3.存储文件的内容 1.2.4.如何新建文件 1.2.5.如何理解目录 1.2.6.如何找到某一个文件 1.3.操作系统如何打开文件 2.软硬链接 我们知…

外贸技巧:热衷开发却不精于追踪!这个误区害惨了外贸人...

很多外贸业务员热衷于开发客户&#xff0c;可对于后续的追踪却不能给予足够的重视。结果是开发的很辛苦&#xff0c;但后期却屡屡因为跟踪不积极&#xff0c;造成订单机会莫名其妙的就悄悄溜走了。 俗话说的好&#xff0c;一鸟在手胜过二鸟在林&#xff0c;而外贸业务员也需要…

Matlab进阶绘图第48期—带等高线的三维特征渲染散点图

带等高线的三维特征渲染散点图是等高线图与特征渲染三维散点图的组合。 其中&#xff0c;等高线图与特征渲染的三维散点图的颜色用于表示同一个特征。 由于等高线图无遮挡但不直观&#xff0c;特征渲染的三维散点图直观但有遮挡&#xff0c;而将二者组合&#xff0c;可以实现…

风险与收益

风险与收益 影响资产需求的主要因素财富总量预期收益率资产的流动性影响流动性的主要因素 风险 如何降低风险系统风险和非系统风险机会集合与有效集合资产组合理论 影响资产需求的主要因素 影响资产需求的主要因素包括&#xff1a;财富总量、预期收益率、资产的流动性和风险。…

免费SSL证书怎么申请?

在数字化时代&#xff0c;网络安全已成为企业与个人无法忽视的重要议题。其中&#xff0c;SSL&#xff08;Secure Sockets Layer&#xff09;证书作为保障在线信息传输安全的关键工具&#xff0c;已广泛应用于各类网站。更令人欣喜的是&#xff0c;如今市场上存在众多免费SSL证…