EfficientVMamba实战:使用EfficientVMamba实现图像分类任务(一)

文章目录

  • 摘要
  • 安装包
    • 安装timm
  • 数据增强Cutout和Mixup
  • EMA
  • 项目结构
  • 编译安装Vim环境
    • 环境
    • 安装过程
      • 安装库文件
  • 计算mean和std
  • 生成数据集

摘要

论文:https://arxiv.org/pdf/2401.09417v1.pdf
作者研究了轻量级模型设计的新方法,通过引入视觉状态空间模型(SSM)以提高效率和性能。提出了一种名为EcientVMamba的高效模型变体,结合选择性扫描和有效跳跃采样,同时利用全局和局部表示特征。EcientVMamba在多种视觉任务中取得了具有竞争力的结果,并降低了计算复杂度。文章还探讨了SSMs在视觉任务中的应用,并指出现有轻量级模型在保持全局表示能力方面的挑战。
在这里插入图片描述

EcientVMamba的设计为解决这些问题提供了新的思路,展示了SSM在视觉任务中的潜力。该模型通过融合全局自注意力机制和卷积神经网络,实现了全局和局部特征的有效融合,优化了SSM和CNN块的分配,提升了模型性能。同时,本文还提出了视觉状态空间块EVSS,结合ES2D选择性扫描和卷积操作,降低计算复杂度,提高特征提取效率。此外,本文还设计了多种EcientVMamba模型变体,以适应不同大小和计算需求。实验结果表明,这些模型在图像分类、目标检测和语义分割任务上表现出色,实现了高效内存使用和性能平衡。本文的研究为轻量级视觉模型的发展提供了新的思路和方向,推动了图表示学习领域的发展。

本文使用EcientVMamba模型实现图像分类任务,模型选择最小的EcientVMamba_T,在植物幼苗分类任务ACC达到了93%+,达到了ViM的水平。。

在这里插入图片描述

在这里插入图片描述

通过这篇文章能让你学到:

  1. 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?
  2. 如何实现EfficientVMamba模型实现训练?
  3. 如何使用pytorch自带混合精度?
  4. 如何使用梯度裁剪防止梯度爆炸?
  5. 如何使用DP多显卡训练?
  6. 如何绘制loss和acc曲线?
  7. 如何生成val的测评报告?
  8. 如何编写测试脚本测试测试集?
  9. 如何使用余弦退火策略调整学习率?
  10. 如何使用AverageMeter类统计ACC和loss等自定义变量?
  11. 如何理解和统计ACC1和ACC5?
  12. 如何使用EMA?

如果基础薄弱,对上面的这些功能难以理解可以看我的专栏:经典主干网络精讲与实战
这个专栏,从零开始时,一步一步的讲解这些,让大家更容易接受。

安装包

安装timm

使用pip就行,命令:

pip install timm

mixup增强和EMA用到了timm

数据增强Cutout和Mixup

为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:

pip install torchtoolbox

Cutout实现,在transforms中。

from torchtoolbox.transform import Cutout
# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    Cutout(),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])

需要导入包:from timm.data.mixup import Mixup,

定义Mixup,和SoftTargetCrossEntropy

  mixup_fn = Mixup(
    mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
    prob=0.1, switch_prob=0.5, mode='batch',
    label_smoothing=0.1, num_classes=12)
 criterion_train = SoftTargetCrossEntropy()

Mixup 是一种在图像分类任务中常用的数据增强技术,它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。
参数详解:

mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。

cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。

cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。

如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0

prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。

switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。

mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。

correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正

label_smoothing (float):将标签平滑应用于混合目标张量。

num_classes (int): 目标的类数。

EMA

EMA(Exponential Moving Average)是指数移动平均值。在深度学习中的做法是保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。

EMA在深度学习训练中的好处主要有以下几点:

  • 稳定性:EMA能够减少模型权重在训练过程中的波动,使模型更加稳定。
  • 提高性能:在某些情况下,使用EMA权重的模型在验证集或测试集上的性能可能优于直接使用原始模型权重的模型。
  • 更好的泛化能力:由于EMA平滑了模型权重的更新,它可能有助于模型更好地泛化到新数据。
    需要注意的是,虽然EMA在很多情况下都很有用,但并不是所有任务或所有模型都适合使用EMA。在实际应用中,是否使用EMA以及具体的衰减率设置可能需要根据任务的具体需求和模型的特性进行调整。

具体实现如下:


import logging
from collections import OrderedDict
from copy import deepcopy
import torch
import torch.nn as nn

_logger = logging.getLogger(__name__)

class ModelEma:
    def __init__(self, model, decay=0.9999, device='', resume=''):
        # make a copy of the model for accumulating moving average of weights
        self.ema = deepcopy(model)
        self.ema.eval()
        self.decay = decay
        self.device = device  # perform ema on different device from model if set
        if device:
            self.ema.to(device=device)
        self.ema_has_module = hasattr(self.ema, 'module')
        if resume:
            self._load_checkpoint(resume)
        for p in self.ema.parameters():
            p.requires_grad_(False)

    def _load_checkpoint(self, checkpoint_path):
        checkpoint = torch.load(checkpoint_path, map_location='cpu')
        assert isinstance(checkpoint, dict)
        if 'state_dict_ema' in checkpoint:
            new_state_dict = OrderedDict()
            for k, v in checkpoint['state_dict_ema'].items():
                # ema model may have been wrapped by DataParallel, and need module prefix
                if self.ema_has_module:
                    name = 'module.' + k if not k.startswith('module') else k
                else:
                    name = k
                new_state_dict[name] = v
            self.ema.load_state_dict(new_state_dict)
            _logger.info("Loaded state_dict_ema")
        else:
            _logger.warning("Failed to find state_dict_ema, starting from loaded model weights")

    def update(self, model):
        # correct a mismatch in state dict keys
        needs_module = hasattr(model, 'module') and not self.ema_has_module
        with torch.no_grad():
            msd = model.state_dict()
            for k, ema_v in self.ema.state_dict().items():
                if needs_module:
                    k = 'module.' + k
                model_v = msd[k].detach()
                if self.device:
                    model_v = model_v.to(device=self.device)
                ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v)

加入到模型中。

#初始化
if use_ema:
     model_ema = ModelEma(
            model_ft,
            decay=model_ema_decay,
            device='cpu',
            resume=resume)

# 训练过程中,更新完参数后,同步update shadow weights
def train():
    optimizer.step()
    if model_ema is not None:
        model_ema.update(model)


# 将model_ema传入验证函数中
val(model_ema.ema, DEVICE, test_loader)

针对没有预训练的模型,容易出现EMA不上分的情况,这点大家要注意啊!

项目结构

EfficientVMamba_Demo
├─data1
│  ├─Black-grass
│  ├─Charlock
│  ├─Cleavers
│  ├─Common Chickweed
│  ├─Common wheat
│  ├─Fat Hen
│  ├─Loose Silky-bent
│  ├─Maize
│  ├─Scentless Mayweed
│  ├─Shepherds Purse
│  ├─Small-flowered Cranesbill
│  └─Sugar beet
├─models
│  └─vmamba_efficient.py
├─mean_std.py
├─makedata.py
├─train.py
└─test.py

mean_std.py:计算mean和std的值。
makedata.py:生成数据集。
train.py:训练Vim模型
models:来源官方代码,对面的代码做了一些适应性修改。
test.py:测试脚本

编译安装Vim环境

环境

系统:ubuntu22.04
CUDA:12.1
python:3.11
显卡驱动:545
在这里插入图片描述

安装过程

系统、CUDA和python的安装过程忽略,这些都能找到。

安装库文件

下载https://github.com/hustvl/Vim源码。
进入vim中,找到vim_requirements.txt文件,如下图:
在这里插入图片描述打开vim_requirements.txt文件,按照要求安装缺失的库文件,如下:

addict==2.4.0
aiohttp==3.9.1
aiosignal==1.3.1
alembic==1.13.0
async-timeout==4.0.3
attrs==23.1.0
blinker==1.7.0
# causal-conv1d @ file:///home/zhulianghui/VisionProjects/mamba/lib/causal_conv1d-1.0.0%2Bcu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl#sha256=79a4bab633ebff031e615d5e8ba396b0dc0c046f4406980ee238fb86a9090038
certifi==2023.11.17
charset-normalizer==3.3.2
click==8.1.7
cloudpickle==3.0.0
contourpy==1.2.0
cycler==0.12.1
databricks-cli==0.18.0
datasets==2.15.0
dill==0.3.7
docker==6.1.3
einops==0.7.0
entrypoints==0.4
filelock==3.13.1
Flask==3.0.0
fonttools==4.46.0
frozenlist==1.4.0
fsspec==2023.10.0
gitdb==4.0.11
GitPython==3.1.40
greenlet==3.0.2
gunicorn==21.2.0
huggingface-hub==0.19.4
idna==3.6
importlib-metadata==7.0.0
itsdangerous==2.1.2
Jinja2==3.1.2
joblib==1.3.2
kiwisolver==1.4.5
Mako==1.3.0
# mamba-ssm @ file:///home/zhulianghui/VisionProjects/mamba/lib/mamba_ssm-1.0.1%2Bcu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl#sha256=71ad1b1eafb05a6e8a41fd82e046fe85511d6378fa3a583e55215b6aa1d65ab9
Markdown==3.5.1
MarkupSafe==2.1.3
matplotlib==3.8.2
mlflow==2.9.1
mmcv==1.3.8
mmsegmentation==0.14.1
mpmath==1.3.0
multidict==6.0.4
multiprocess==0.70.15
networkx==3.2.1
ninja==1.11.1.1
numpy==1.26.2
# nvidia-cublas-cu12==12.1.3.1
# nvidia-cuda-cupti-cu12==12.1.105
# nvidia-cuda-nvrtc-cu12==12.1.105
# nvidia-cuda-runtime-cu12==12.1.105
# nvidia-cudnn-cu12==8.9.2.26
# nvidia-cufft-cu12==11.0.2.54
# nvidia-curand-cu12==10.3.2.106
# nvidia-cusolver-cu12==11.4.5.107
# nvidia-cusparse-cu12==12.1.0.106
# nvidia-nccl-cu12==2.18.1
# nvidia-nvjitlink-cu12==12.3.101
# nvidia-nvtx-cu12==12.1.105
oauthlib==3.2.2
opencv-python==4.8.1.78
packaging==23.2
pandas==2.1.3
Pillow==10.1.0
platformdirs==4.1.0
prettytable==3.9.0
protobuf==4.25.1
pyarrow==14.0.1
pyarrow-hotfix==0.6
PyJWT==2.8.0
pyparsing==3.1.1
python-dateutil==2.8.2
python-hostlist==1.23.0
pytz==2023.3.post1
PyYAML==6.0.1
querystring-parser==1.2.4
regex==2023.10.3
requests==2.31.0
safetensors==0.4.1
scikit-learn==1.3.2
scipy==1.11.4
six==1.16.0
smmap==5.0.1
SQLAlchemy==2.0.23
sqlparse==0.4.4
sympy==1.12
tabulate==0.9.0
threadpoolctl==3.2.0
timm==0.4.12
tokenizers==0.15.0
tomli==2.0.1
# torch==2.1.1+cu118
# torchvision==0.16.1+cu118
tqdm==4.66.1
transformers==4.35.2
triton==2.1.0
typing_extensions==4.8.0
tzdata==2023.3
urllib3==2.1.0
wcwidth==0.2.12
websocket-client==1.7.0
Werkzeug==3.0.1
xxhash==3.4.1
yapf==0.40.2
yarl==1.9.4
zipp==3.17.0

进入causal-conv1d文件夹,如下图:
在这里插入图片描述
执行命令:

python setup.py install

进入mamba文件夹下面,如下图:
在这里插入图片描述
执行命令:

python setup.py install

最终就可以完成编译了!

计算mean和std

为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:

from torchvision.datasets import ImageFolder
import torch
from torchvision import transforms

def get_mean_and_std(train_data):
    train_loader = torch.utils.data.DataLoader(
        train_data, batch_size=1, shuffle=False, num_workers=0,
        pin_memory=True)
    mean = torch.zeros(3)
    std = torch.zeros(3)
    for X, _ in train_loader:
        for d in range(3):
            mean[d] += X[:, d, :, :].mean()
            std[d] += X[:, d, :, :].std()
    mean.div_(len(train_data))
    std.div_(len(train_data))
    return list(mean.numpy()), list(std.numpy())

if __name__ == '__main__':
    train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())
    print(get_mean_and_std(train_dataset))

数据集结构:

image-20220221153058619

运行结果:

([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

把这个结果记录下来,后面要用!

生成数据集

我们整理还的图像分类的数据集结构是这样的

data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet

pytorch和keras默认加载方式是ImageNet数据集格式,格式是

├─data
│  ├─val
│  │   ├─Black-grass
│  │   ├─Charlock
│  │   ├─Cleavers
│  │   ├─Common Chickweed
│  │   ├─Common wheat
│  │   ├─Fat Hen
│  │   ├─Loose Silky-bent
│  │   ├─Maize
│  │   ├─Scentless Mayweed
│  │   ├─Shepherds Purse
│  │   ├─Small-flowered Cranesbill
│  │   └─Sugar beet
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet

新增格式转化脚本makedata.py,插入代码:

import glob
import os
import shutil

image_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):
    print('true')
    #os.rmdir(file_dir)
    shutil.rmtree(file_dir)#删除再建立
    os.makedirs(file_dir)
else:
    os.makedirs(file_dir)

from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(train_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

for file in val_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(val_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

完成上面的内容就可以开启训练和测试了。

接下来在EfficientVMamba实战:使用EfficientVMamba实现图像分类任务(二)中完成训练和测试。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/508768.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode 4.1

LeetCode 热题 100 贪心算法1.买卖股票的最佳时机2.跳跃游戏3.跳跃游戏 II4.划分字母区间 区间合并1.合并区间 贪心算法 1.买卖股票的最佳时机 买卖股票的最佳时机 买的那天一定是卖的那天之前的最小值。 每到一天,维护那天之前的最小值即可。 在题目中&#xff0…

LAN和WAN, 调制解调器, 路由器,交换机 区别

LAN LAN(Local Area Network)是指在相对较小的地理范围内(如办公室、学校、实验室、家庭等)连接在一起的计算机和网络设备的集合。LAN通常由路由器、交换机、网线、无线路由器等设备组成,用于连接多台计算机、打印机、…

实验四 Spark Streaming编程初级实践

一、Flume简介 数据流 :数据流通常被视为一个随时间延续而无限增长的动态数据集合,是一组顺序、大量、快速、连续到达的数据序列。通过对流数据处理,可以进行卫星云图监测、股市走向分析、网络攻击判断、传感器实时信号分析。 二、Flume安装…

Mysql故障和优化

一、MySQL故障 二、MySQL优化 1.硬件优化: 2.数据库设计与规划 1.提前估计数据量,使用什么存储引擎 2.数据库服务器专机专用,避免额外的服务可能导致的性能下降和不稳定性 3.增加多台服务器,以达到稳定、高效的效果。主从同步、…

C++ 2024-4-1 作业

#include <iostream> using namespace std;class A { public:int a;A(int a):a(a){cout<<"A的有参构造"<<endl;} }; class B:virtual public A { public:int b;B(int a,int b):A(a),b(b){cout<<"B的有参构造"<<endl;} }; cl…

vscode通过ssh连接服务器(吐血总结)

一、通过ssh连接服务器 1、打开vscode&#xff0c;进入拓展&#xff08;CtrlShiftX&#xff09;&#xff0c;下载拓展Remote - SSH。 2、点击远程资源管理器选项卡&#xff0c;选择远程&#xff08;隧道/SSH&#xff09;类别。 3、点击SSH配置。 4、在中间上部分弹出的配置文件…

Mac反编译APK

文章目录 第一种方式: brew installapktool 使用说明dex2jar 使用说明 第二种方式: 下载安装包apktool 使用说明 (根据官方介绍没有操作成功,后续成功再更新这里)dex2jar 使用说明 安装 JD-GUI 查看jar包中的class文件JD-GUI 使用说明 第一种方式: brew install 安装过程可能很…

Excel 隔几行批量插入空白行

例如如下表格&#xff0c;每隔6行插入一行数据&#xff1a; 1&#xff09;第7个单元格输入1 2&#xff09;选中6个单元格&#xff0c;然后双击填充数据&#xff1a; 3&#xff09;F5 找到常量 Ctrlshift 复制插入的数据&#xff0c;然后选中数据 按F5&#xff0c;定位到空值

第21章-直连路由和静态路由

1. 直连路由 1&#xff09;定义&#xff1a;指路由器接口直接相连的网段的路由&#xff1b; 2&#xff09;特点&#xff1a; ① 不需要特别的配置&#xff0c;双UP(物理层数据链路层)&#xff1b; ② 在路由器的接口上配置IP地址即可&#xff1b; ③ 开机自动产生&#xff1b; …

如何做用户体验优化

本文是从用户体验优化角度谈用户体验&#xff0c;其实用户体验不是设计必须的步骤&#xff0c;而是分散在产品设计中的产品设计思想。 一、用户体验分类 用户体验是指用户在“使用”某个产品或服务过程中的全部感受&#xff0c;包括情感、信仰、喜好、认知印象、生理和心理反应…

789. 数的范围 (二分学习)

1.确定一个区间&#xff0c;使得目标值一定在区间中 2.找一个性质满足&#xff1a; &#xff08;1&#xff09;性质具有二段性 &#xff08;2&#xff09;答案是二段性的分界点 3.整数二分&#xff08;处理红色右端点和绿色左端点&#xff09; //代码1&#xff1a;右端点 int…

探讨在大数据体系中API的通信机制与工作原理

** 引言 关联阅读博客文章&#xff1a;深入解析大数据体系中的ETL工作原理及常见组件 关联阅读博客文章&#xff1a;深入理解HDFS工作原理&#xff1a;大数据存储和容错性机制解析 ** 在当今数字化时代&#xff0c;数据已经成为企业发展和决策的核心。随着数据规模的不断增长…

网络安全 | 什么是网络安全?

关注WX&#xff1a;CodingTechWork 网络安全 网络安全-介绍 网络安全是指用于防止网络攻击或减轻其影响的任何技术、措施或做法。网络安全旨在保护个人和组织的系统、应用程序、计算设备、敏感数据和金融资产&#xff0c;使其免受简单而不堪其绕的计算机病毒、复杂而代价高昂…

人工智能之深度学习笔记——每天五分钟快速掌握深度学习理论

本专栏会对深度学习以及深度学习搭建技巧做一个详尽的介绍&#xff0c;相信大家阅读完本专栏之后&#xff0c;深度学习已经不是一个遥不可及的名词&#xff0c;我们会知道它究竟是什么&#xff0c;本专栏尽可能地简单详细地介绍每一个深度学习知识&#xff0c;帮助每天只用很少…

vue3中播放flv流视频,以及组件封装超全

实现以上功能的播放&#xff0c;只需要传入一个流的地址即可&#xff0c;当然组件也只有简单的实时播放功能 下面直接上组件 里面的flvjs通过npm i flv.js直接下载 <template><div class"player" style"position: relative;"><p style&…

什么是EDM邮件推广营销?

电子邮件作为最古老的互联网沟通工具之一&#xff0c;凭借其无可比拟的直达性、个性化潜力与高投资回报率&#xff0c;始终占据着企业营销策略的核心地位。随着人工智能技术的革新应用&#xff0c;云衔科技以其前瞻视野与深厚技术底蕴&#xff0c;倾力打造了一站式智能EDM邮件营…

Excel·VBA二维数组组合函数之穷举推理题

看到一个帖子《CSDN-求助一道推理题》&#xff0c;与之前《python穷举暴力破解《2018年刑侦推理题》用python穷举的推理题很类似 那么是否可以使用《ExcelVBA二维数组组合函数、组合求和》combin_arr2d函数&#xff0c;生成结果进行穷举呢&#xff1f; Sub 穷举推理题()Dim …

搜维尔科技:Manus Prime 3 Mocap数据手套,体验极致的每指触觉!

完全适用于VR虚拟现实场景 特斯拉也在使用的量子数据 Tesla 目前正在使用 MANUS Quantum Metagloves创建一个数据集&#xff0c;帮助他们训练 Tesla 机器人。 量子数据训练QUANTUM AI 我们以类似的方式使用 Quantum Metagloves 来生成一流的手指跟踪数据集&#xff0c;并将其…

吴恩达2022机器学习专项课程(一) 4.5 线性回归的梯度下降

问题预览/关键词 本节内容梯度下降公式梯度下降公式的推导过程梯度下降在线性回归误差平方成本函数的收敛梯度下降在多曲面的收敛 笔记 1.本节内容 给线性回归模型的误差平方成本函数执行梯度下降。 2.梯度下降公式 线性回归下误差成本函数的梯度下降公式。 3.梯度下降公…

uniapp 小程序和app map地图上显示多个酷炫动态的标点,头像后端传过来,真机测试有效

展示效果 二、引入地图 如果需要搜索需要去腾讯地图官网上看文档&#xff0c;找到对应的内容 1.申请开发者密钥&#xff08;key&#xff09;&#xff1a;申请密钥 2.开通webserviceAPI服务&#xff1a;控制台 ->应用管理 -> 我的应用 ->添加key-> 勾选WebService…