● 理论基础
题目分类
什么是回溯法
回溯法也可以叫做回溯搜索法,它是一种搜索的方式。
在二叉树系列中,不止一次提到了回溯,如二叉树:以为使用了递归,其实还隐藏着回溯 (opens new window)。
回溯是递归的副产品,只要有递归就会有回溯。
所以以下讲解中,回溯函数也就是递归函数,指的都是一个函数。
回溯法的效率
回溯法的性能如何呢,这里要和大家说清楚了,虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法。
因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。
那么既然回溯法并不高效为什么还要用它呢?
因为没得选,一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。
此时大家应该好奇了,都什么问题,这么牛逼,只能暴力搜索。
回溯法解决的问题
回溯法,一般可以解决如下几种问题:
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
相信大家看着这些之后会发现,每个问题,都不简单!
另外,会有一些同学可能分不清什么是组合,什么是排列?
组合是不强调元素顺序的,排列是强调元素顺序。
例如:{1, 2} 和 {2, 1} 在组合上,就是一个集合,因为不强调顺序,而要是排列的话,{1, 2} 和 {2, 1} 就是两个集合了。
记住组合无序,排列有序,就可以了。
如何理解回溯法
回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!
因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度。
递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。
回溯法模板
Carl总结的回溯算法模板:
在讲二叉树的递归 (opens new window)中我们说了递归三部曲,这里我再给大家列出回溯三部曲。
- 回溯函数模板返回值以及参数
在回溯算法中,我的习惯是函数起名字为backtracking,这个起名大家随意。
回溯算法中函数返回值一般为void。
再来看一下参数,因为回溯算法需要的参数可不像二叉树递归的时候那么容易一次性确定下来,所以一般是先写逻辑,然后需要什么参数,就填什么参数。
但后面的回溯题目的讲解中,为了方便大家理解,我在一开始就帮大家把参数确定下来。
回溯函数伪代码如下:
void backtracking(参数)
- 回溯函数终止条件
既然是树形结构,那么我们在讲解二叉树的递归 (opens new window)的时候,就知道遍历树形结构一定要有终止条件。
所以回溯也有要终止条件。
什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。
所以回溯函数终止条件伪代码如下:
if (终止条件) {
存放结果;
return;
}
- 回溯搜索的遍历过程
在上面我们提到了,回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。
如图:
注意图中,我特意举例集合大小和孩子的数量是相等的!
回溯函数遍历过程伪代码如下:
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。
backtracking这里自己调用自己,实现递归。
大家可以从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。
分析完过程,下面即为回溯算法模板框架;
回溯算法模板框架
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
这份模板很重要,后面做回溯法的题目都靠它了!
● 77. 组合
给定两个整数 n
和 k
,返回范围 [1, n]
中所有可能的 k
个数的组合。
你可以按 任何顺序 返回答案。
示例 1:
输入:n = 4, k = 2 输出: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ]
示例 2:
输入:n = 1, k = 1 输出:[[1]]
思路
思路可由此图概括
回溯三步曲:
1、参数及返回值:无返回值,n和k 两个int型的参数、还需要一个start来记录本层递归中,集合(1,2,...n)从哪里开始遍历。
2、终止条件:当path中有k个元素 添加结果并返回。
图中每次搜索到了叶子节点,我们就找到了一个结果。
相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。
3、单层搜索的过程:
回溯法的搜索过程就是一个树型结构的遍历过程,如上图,for循环对应横向搜索,递归回溯对应纵向。在for循环中从start开始遍历,然后用path保存取到的节点i。
代码
class Solution {
public List<List<Integer>> resList = new ArrayList<List<Integer>>();
public LinkedList<Integer> path = new LinkedList<Integer>();
public List<List<Integer>> combine(int n, int k) {
if(k > n) return resList;
backtracking(1, n, k);
return resList;
}
public void backtracking(int start, int n, int k){
//path包含K个值时 终止
if(path.size() == k){
resList.add(new ArrayList<>(path));
return;
}
for(int i = start; i <= n; i++){
path.addLast(i);
backtracking(i + 1, n, k);
path.pollLast();
}
}
}
剪枝
可以剪枝的地方就在递归中每一层的for循环所选择的起始位置。
如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了。
在每层的for循环中当集合的剩余元素不足以使得path满足总计k个的时候,可以不再遍历。
优化过程如下:
-
已经选择的元素个数:path.size();
-
还需要的元素个数为: k - path.size();
-
在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历
为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。
举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。
从2开始搜索都是合理的,可以是组合[2, 3, 4]。
更便于理解的思路:
path.size() : 已经找的个数
k-path.size() :还需找的个数
[x, n]的数组长度起码应该是k-path.size()才有继续搜索的可能, 那么就有 n-x+1 = k-path.size() , 解方程得 x = n+1 - (k-path.size()), 而且这个x是可以作为起点往下搜的 也就是for(i = s; i<=x; i++) 这里的x是可以取到的
如图所示
剪枝代码如下:
class Solution {
public List<List<Integer>> resList = new ArrayList<List<Integer>>();
public LinkedList<Integer> path = new LinkedList<Integer>();
public List<List<Integer>> combine(int n, int k) {
if(k > n) return resList;
backtracking(1, n, k);
return resList;
}
public void backtracking(int start, int n, int k){
//path包含K个值时 终止
if(path.size() == k){
resList.add(new ArrayList<>(path));
return;
}
//剪枝
for(int i = start; i <= n - (k - path.size()) + 1; i++){
path.addLast(i);
backtracking(i + 1, n, k);
path.pollLast();
}
}
}