基于Fringe-Projection环形投影技术的人脸三维形状提取算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

 

 

2.算法运行软件版本

matlab2022a

3.部分核心程序

....................................................................
figure; 
imshow(Images); 
title('原图');
%显示原始图像
% 变量 bw 设置为 12,作为 face2 图像的标志
bw = 10; 
%傅里叶域处理
Images_fft = fftshift(fft2(Images));% 对图像进行傅里叶变换,并将零频率移到图像中心
figure;
subplot(131);
imagesc(log(abs(Images_fft))); 
title('傅里叶域图像');% 显示傅里叶域图像

bandf = zeros(size(Images_fft)); % 创建与傅里叶域图像大小相同的全零矩阵 bandf
% 找到傅里叶域图像中的最大值对应的坐标
[cent_x,cent_y] = find(abs(Images_fft)==max(max(abs(Images_fft))));
% 设置中心点附近的频率分量为零,以去除低频信息
Images_fft(cent_x-20:cent_x+20,cent_y-20:cent_y+20) = 0;
subplot(132);
imagesc(log(abs(Images_fft)));
title('对傅里叶域图像进行带通滤波');% 显示傅里叶域图像

% 对傅里叶域图像进行带通滤波,保留高频信息
Images_fft_bp=Images_fft.*bandf;

% 对滤波后的傅里叶域图像进行平移,使零频率恢复到图像中心
shift_x       = cent_x - side_max_x;
shift_y       = cent_y - side_max_y;
Images_fft_bp = circshift(Images_fft_bp,[shift_x shift_y]);

subplot(133);
imagesc(log(abs(Images_fft_bp))); 
title('滤波并平移后的傅里叶域图像');
.......................................................
0032

4.算法理论概述

       人脸三维形状提取是计算机视觉和人工智能领域中的重要研究方向。它通过对人脸进行深度信息的获取和分析,得到人脸在三维空间中的几何形状。其中,基于Fringe-Projection环形投影技术的人脸三维形状提取算法是一种常用的非接触式三维扫描方法。

1、数学原理:

Fringe-Projection环形投影技术:
        Fringe-Projection环形投影技术是一种基于结构光原理的三维扫描方法。该方法利用投影仪投射环形光条(条纹)到目标物体表面,通过相机捕获投影物体的图像,然后根据条纹的形变信息来计算物体表面的深度信息。
       投影仪和相机的相对位置和参数需要进行标定,以便准确地获取三维形状信息。通过计算相机图像中每个像素对应的相位差,可以推导出每个像素点在三维空间中的坐标,从而获得目标物体的三维形状。

相位差计算:
       在Fringe-Projection环形投影技术中,相机捕获的图像包含了环形光条在目标物体表面上的形变信息。这些形变信息可以通过计算像素点的相位差来得到。
设环形光条的波长为λ,投影到物体表面的光条对应的相位为φ(x, y),则像素点(x, y)处的相位差Δφ(x, y)可以通过以下公式计算:
Δφ(x, y) = φ(x, y) mod 2π

其中,mod表示取模运算。通常情况下,相位差的范围在[0, 2π]之间。

相位展开:
       由于相位差Δφ(x, y)的范围在[0, 2π]之间,当物体表面的形状发生高度变化时,相位差可能会发生突变,导致相位计算的不连续性。为了解决这个问题,需要对相位进行展开处理。
相位展开的目标是找到一个合适的整数k(x, y),使得展开后的相位Unwrapped_Δφ(x, y)满足以下条件:
Unwrapped_Δφ(x, y) = Δφ(x, y) + 2π * k(x, y)

展开后的相位Unwrapped_Δφ(x, y)是连续的,可以更准确地表示物体表面的高度信息。

2、实现过程:
      基于Fringe-Projection环形投影技术的人脸三维形状提取算法主要分为以下步骤:投影和图像捕获、相位计算、相位展开和三维坐标计算。下面将详细介绍每个步骤:

投影和图像捕获:
      首先,使用投影仪投射环形光条到目标人脸表面。投影光条会在人脸表面产生形变。然后,通过相机捕获人脸表面的图像,图像中包含了环形光条的形变信息。

相位计算:
      根据相机捕获的图像,计算每个像素点的相位差Δφ(x, y)。这个步骤需要对图像进行预处理,例如去噪、边缘检测和相位提取等。

相位展开:
       对相位差Δφ(x, y)进行展开处理,找到合适的整数k(x, y),得到展开后的相位Unwrapped_Δφ(x, y)。展开的过程可以采用基于像素点相邻性的算法,例如四连通或八连通算法。

三维坐标计算:
       根据展开后的相位Unwrapped_Δφ(x, y)和已知的相机投影参数,计算每个像素点在三维空间中的坐标。这个过程需要进行相机标定和坐标转换,得到最终的人脸三维形状信息。

3、应用领域:
       基于Fringe-Projection环形投影技术的人脸三维形状提取算法在计算机视觉和人工智能领域有着广泛的应用。其中一些典型的应用包括:

        人脸识别和认证:通过获取人脸的三维形状信息,可以提高人脸识别和认证系统的准确性和安全性。

        人脸表情分析:人脸的三维形状信息可以用于表情分析和情感识别,帮助理解人脸表情背后的情感状态。

       视觉效果和增强现实:人脸的三维形状信息可以应用于视觉效果和增强现实技术,为用户提供更加真实和沉浸式的体验。

      医学和生物识别:在医学领域,人脸的三维形状信息可以用于面部重建和面部手术模拟。在生物识别领域,它可以用于年龄估计和性别识别等应用。
       基于Fringe-Projection环形投影技术的人脸三维形状提取算法是一种非接触式的三维扫描方法,通过投影和相机捕获来获取人脸的深度信息。该算法的实现过程包括投影和图像捕获、相位计算、相位展开和三维坐标计算。它在人脸识别、表情分析、视觉效果、医学和生物识别等领域有着广泛的应用前景。然而,在实际应用中,还需要考虑算法的精度、速度和适用场景等因素,以满足不同应用场景的需求。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/50538.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

用windeployqt.exe打包Qt代码

首先找到我们编译Qt代码的对应Qt版本的dll目录,该目录下有windeployqt.exe: D:\DevTools\Qt\5.9\msvc2017_64\bin 在这个目录下打开cmd程序。 然后把要打包的exe放到一个单独的目录下,比如: 然后在cmd中调用: winde…

Qt : day4

1.思维导图 2.服务器 #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);//给服务器指针实例化空间server new QTcpServer(this);}Widget::~Widget() {delete ui;…

25.8 matlab里面的10中优化方法介绍—— 拉各朗日乘子法求最优化解(matlab程序)

1.简述 拉格朗日乘子法: 拉格朗日乘子法(Lagrange multipliers)是一种寻找多元函数在一组约束下的极值的方法。通过引入拉格朗日乘子,可将有 变量与 约束条件的最优化问题转化为具有变量的无约束优化问题求解 举个例子&#xff…

【MATLAB第60期】【更新中】基于MATLAB的ARMAX具有外生回归因子的移动平均自回归模型

【MATLAB第60期】【更新中】基于MATLAB的ARMAX具有外生回归因子的移动平均自回归模型 版本更新: 2023/7/29版本: 1.增加自定义参数,方便直接套数据运行。 pre_num3;%预采样数据个数 learn_pr0.85; %训练数据比例(不包括预采样数…

使用 ChatGPT 进行研究的先进技术

在这篇文章中,您将探索改进您研究的先进技术。尤其, 分析和解释研究数据进行文献综述并找出研究差距废话不多说直接开始吧!!! 分析和解释研究数据 一家小企业主希望分析客户满意度数据以改善客户服务。他们使用包含 10…

边缘计算对现代交通的重要作用

边缘计算之所以重要,是在于即使在5G真正商用之时,可以实现超大带宽(eMBB)的应用场景,但庞大数据量的涌现也就意味着需要在云和端传输过程中找到一个承接点,对数据进行预处理再选择是否上云。 边缘计算应用演…

源码学习初章-基础知识储备

文章目录 学前准备源码地址引言extern "C" 宏定义平台宏跨平台宏vstdio平台禁用警告宏 连接、双层宏定义函数宏系统函数宏自定义函数宏多语句执行宏do while0 普通宏定义 C的一些必备函数知识回调函数和函数指针回调函数wireshark-4.0.7源码例子函数指针wireshark4.0…

kafka集群搭建(Linux环境)

zookeeper搭建,可以搭建集群,也可以单机(本地学习,没必要搭建zookeeper集群,单机完全够用了,主要学习的是kafka) 1. 首先官网下载zookeeper:Apache ZooKeeper 2. 下载好之后上传到…

自动化测试框架unittest与pytest的区别!

引言 前面文章已经介绍了python单元测试框架,大家平时经常使用的是unittest,因为它比较基础,并且可以进行二次开发,如果你的开发水平很高,集成开发自动化测试平台也是可以的。而这篇文章主要讲unittest与pytest的区别&…

Grafana - TDEngine搭建数据监测报警系统

TDengine 与开源数据可视化系统 Grafana 快速集成搭建数据监测报警系统 一、介绍二、前置条件三、Grafana 安装及配置3.1 下载3.2 安装3.2.1 windows安装 - 图形界面3.2.2 linux安装 - 安装脚本 四、Grafana的TDEngine配置及使用4.1 登录4.2 安装 Grafana Plugin 并配置数据源4…

流数据湖平台Apache Paimon(一)概述

文章目录 第1章 概述1.1 简介1.2 核心特性1.3 基本概念1.3.1 Snapshot1.3.2 Partition1.3.3 Bucket1.3.4 Consistency Guarantees一致性保证 1.4 文件布局1.4.1 Snapshot Files1.4.2 Manifest Files1.4.3 Data Files1.4.4 LSM Trees 第1章 概述 1.1 简介 Flink 社区希望能够将…

10.python设计模式【代理模式】

内容:为其他对象提供一种代理一控制对这个对象的访问 应用场景: 远程代理: 为远程的对象提供代理虚代理:根据需要创建很大的对象保护代理:控制对原始对象的访问,用于对象有不同访问权限时 UML图 举个例…

新零售行业如何做会员管理和会员营销

蚓链数字化营销系统全渠道会员管理解决方案,线上线下统一管理,打造私域流量,微信、门店会员全渠道管理,打通私域流量池,实现裂变营销: 开启新零售之路,必然要摒弃原有的管理模式,大…

实训笔记7.27

实训笔记7.27 7.27笔记一、Hive数据仓库基本概念(处理结构化数据)1.1 Hive的组成架构1.1.1 Hive的客户端1.1.2 Hive的驱动程序1.1.3 Hive的元数据库 1.2 Hive和数据库的区别 二、Hive的安装配置三、Hive的相关配置项四、Hive的基本使用方式4.1 使用Hive的…

DMA传输原理与实现详解(超详细)

DMA(Direct Memory Access,直接内存访问)是一种计算机数据传输方式,允许外围设备直接访问系统内存,而无需CPU的干预。 文章目录 Part 1: DMA的工作原理配置阶段:数据传输阶段: Part 2: DMA数据…

Jmeter+MySQL链接+JDBC Connection配置元件+使用

参考大大的博客学习:怎么用JMeter操作MySQL数据库?看完秒懂!_jmeter mysql_程序员馨馨的博客-CSDN博客 注:里面所有没打码的都是假数据,麻烦大家自行修改正确的信息。 一、背景 需要取数据库中的值,作为…

分布式操作系统会不会是操作系统的终端形态?

昨天一位网友私信我,提出一个问题:“Laxcus分布式操作系统会不会是操作系统发展的终极形态?”。今天觉得有必要把这件事说一说,所以就忙里偷闲写下这篇文章。 咱们先说结论:是也不是,需要具体情况具…

C++--菱形继承

1.什么是菱形继承 单继承:一个子类只有一个直接父类时称这个继承关系为单继承 多继承:一个子类有两个或以上直接父类时称这个继承关系为多继承 菱形继承的问题:菱形继承有数据冗余和二义性的问题,数据冗余是由于创建多个相同类型的…

Gradle和Maven的区别

Gradle和Maven 当涉及到构建和管理项目时,Gradle和Maven是两个非常流行的选项。本文将讨论Gradle和Maven之间的区别以及它们的配置信息差异。 1. Gradle和Maven的区别 1.1 构建脚本语言 Maven使用XML作为构建脚本语言,而Gradle使用基于Groovy的DSL&…

❤️创意网页:创意动态画布~缤纷移动涂鸦~图片彩色打码

✨博主:命运之光 🌸专栏:Python星辰秘典 🐳专栏:web开发(简单好用又好看) ❤️专栏:Java经典程序设计 ☀️博主的其他文章:点击进入博主的主页 前言:欢迎踏入…