【MATLAB第60期】【更新中】基于MATLAB的ARMAX具有外生回归因子的移动平均自回归模型

【MATLAB第60期】【更新中】基于MATLAB的ARMAX具有外生回归因子的移动平均自回归模型


版本更新:

2023/7/29版本:
1.增加自定义参数,方便直接套数据运行。

pre_num=3;%预采样数据个数
learn_pr=0.85;  %训练数据比例(不包括预采样数据)
mm=pre_num;%输入响应数据个数    
nn=pre_num;%输出响应数据个数   

2.增加ARIMAX模型参数自动选择功能
(1)可手动选择ADF或者KPSS平稳性检验方式
存在不足:目前无法解决D>0的问题,所以优先选择D=0的检验方法,本文选用KPSS检验
[p, d, q ] = fit_model( Y,learn_num, test_num );
(2)检验p、d、q是否满足后续正常运行条件

if pre_num>=p+d
    disp('--------------------------------------------');
     fprintf('ARIMAX(%d, %d, %d)满足运行要求', p, d, q);
else
    disp('--------------------------------------------');
     fprintf('ARIMAX(%d, %d, %d)不满足运行要求,', p, d, q);
     disp('请增大pre_num预采样数值');
end

3.增加参数评估结果(命令行窗口展示)

最优模型参数为:ARIMAX (2, 0, 0)
ARIMAX(2,0,0) Model (Gaussian Distribution)
 
    Effective Sample Size: 53
    Number of Estimated Parameters: 7
    LogLikelihood: -164.451
    AIC: 342.901
    BIC: 356.693
 
                Value     StandardError    TStatistic    PValue
                ______    _____________    __________    ______

    Constant    -25.21        10.11          -2.49        0.01 
    AR{1}         0.30         0.08           3.63        0.00 
    AR{2}        -0.06         0.06          -1.01        0.31 
    Beta(1)       3.24         0.32          10.27        0.00 
    Beta(2)       0.00         0.00           3.21        0.00 
    Beta(3)       1.92         0.58           3.31        0.00 
    Variance     29.01         7.63           3.81        0.00 

4.增加置信区间绘图及评价(默认95%,可自行调整)
在这里插入图片描述

picp2 = PICP (ci, Y(end-test_num+1:end));
pimw2 = PIMWP(ci, Y(end-test_num+1:end));
disp(['测试集的区间覆盖率为:', num2str(picp2), '。区间平均宽度百分比为:', num2str(pimw2)])
测试集的区间覆盖率为:1。区间平均宽度百分比为:3.212

版本不足:

1.未解决D>0的问题,即只能处理通过检验方法判定的平稳的时间序列数据。
2.p、q筛选区间最大值目前只能为2,且缺少d结果的选择(d通过平稳性检验提前确定)。



一、简要介绍

  1. ARMAX模型相比ARMA考虑了影响因素 ,即可以实现基于时间序列数据的回归预测。
  2. 目前,ARMAX预测未来功能存在困难,本篇文章不予介绍。大致思路需要通过时间滞后构造数据,使前时间段的X预测后时间段的Y,即多步预测。
  3. 此示例展示如何将时间序列中的时间划分为预采样期T0、训练期Ty和预测期Tf,并显示了如何提供适当数量的观测值来初始化用于估计和预测的动态模型。
  4. 通过定义ARMA模型中的参数,可实现ARIMAX和SARIMAX模型。本文介绍最基础的ARMAX模型。
    在这里插入图片描述

二、导入数据

  1. 本篇文章案例数据采用3输入1输出,62个样本(1962-2023年)。
  2. 本文用table格式打开,方便对时间进行处理。
clear all
data=readtable('数据集.xlsx');
DataTable = table2timetable(data);%将DataTable转换为时间表。
varnames = ["Y" "X1" "X2" "X3" ];
Tbl = rmmissing(DataTable(:,varnames));%通过应用列表删除从数据中删除所有前导NaN。
T = size(Tbl,1) %总样本量
Y = Tbl.Y; %因变量
X = Tbl{:,varnames(2:end)};%变量

在这里插入图片描述

三、建立模型

为了训练和预测模型,估计必须有足够的预采样数据来初始化自回归项,同样,要从训练模型中预测,预测必须有足够的预采样样本。
此外,预测期中的回归分量需要预测历史数据或未来的预测数据Y,那么需要有与之对应的X,不然无法预测未来。

  1. 本文考虑一个ARMAX(1,2)模型,该模型以X1、X2、X3为外生变量,预测Y。
  2. 将样本的时间线划分为预采样、训练和预测时段。将模型拟合到训练样本,并使用预采样数据来初始化自回归项。然后,根据训练模型对Y进行预测。
  3. 指定预采样数据,以初始化自回归项。一般预采样数据个数为Mdl.P,因为p在之前就设置好了,所以手动设置为1。 -
  4. 指定训练数据,选择2-56作为训练数据。输入数据XEst则为X2-X56,输出为Y2-Y56
  5. 指定预测数据,57-62共6个数据进行测试。输入数据则为X57-X62,输出为Y57-Y62
idxpresample = 1;%预采样数据y0es个数,1
idxestimate = 2:56;%训练数据yest 个数,55
idxforecast = 57:T;%预测数据个数 ,6
  1. 建立ARMAX(1,2)模型
Mdl = arima(1,0,2); % P D Q
%ARIMAX(1,0,2) Model (Gaussian Distribution)
Effective Sample Size: 55
Number of Estimated Parameters: 8
LogLikelihood: -162.152
AIC: 340.303
BIC: 356.362

            Value     StandardError    TStatistic    PValue
            ______    _____________    __________    ______

Constant    -28.86        12.92          -2.23        0.03 
AR{1}         0.20         0.05           4.02        0.00 
MA{1}         0.65         0.16           4.19        0.00 
MA{2}         0.05         0.18           0.31        0.76 
Beta(1)       3.42         0.28          12.37        0.00 
Beta(2)       0.00         0.00           3.19        0.00 
Beta(3)       1.96         0.76           2.57        0.01 
Variance     21.30         5.16           4.13        0.00 
  1. 在训练样本结束时指定必要的观测值作为样本前数据进行预测,需指定训练期的数据,且数据个数至少为1,本文取两个,即训练输入的最后2个值X55-X56和训练输出的最后2个值Y55-Y56。
  2. 预测数据,假设预测的数量为M,则M必须小于等于XF的个数,不然无法运行。本文指定M=6,预测期的输入变量XF为X57-X62。
 [yf,ymse] = forecast(Mdl,M);
  1. 置信区间预测
ci = yf + 1.96*[-sqrt(ymse) sqrt(ymse)];
  1. 绘图。因年份较多,故只展示后面一半的数据。
yrs = year(Tbl.Time(round(T/2):end));%绘制后半部分的响应数据和预测。

figure;
plot(yrs,Tbl.Y(round(T/2):end),"b","LineWidth",2);
hold on
plot(yrs(end-size(idxforecast,2)+1:end),yf,"r--","LineWidth",2);
h = gca;
px = yrs([end - size(idxforecast,2)+1 end end end - size(idxforecast,2)+1]);
py = h.YLim([1 1 2 2]);
hp = patch(px,py,[0.9 0.9 0.9]);
uistack(hp,"bottom");
axis tight
title("ARMAX模型");
legend(["预测区段" "实际值" "预测值"])

四、效果展示

在这里插入图片描述

五、代码获取

后台私信回复“60期”即可获取下载方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/50533.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用 ChatGPT 进行研究的先进技术

在这篇文章中,您将探索改进您研究的先进技术。尤其, 分析和解释研究数据进行文献综述并找出研究差距废话不多说直接开始吧!!! 分析和解释研究数据 一家小企业主希望分析客户满意度数据以改善客户服务。他们使用包含 10…

边缘计算对现代交通的重要作用

边缘计算之所以重要,是在于即使在5G真正商用之时,可以实现超大带宽(eMBB)的应用场景,但庞大数据量的涌现也就意味着需要在云和端传输过程中找到一个承接点,对数据进行预处理再选择是否上云。 边缘计算应用演…

源码学习初章-基础知识储备

文章目录 学前准备源码地址引言extern "C" 宏定义平台宏跨平台宏vstdio平台禁用警告宏 连接、双层宏定义函数宏系统函数宏自定义函数宏多语句执行宏do while0 普通宏定义 C的一些必备函数知识回调函数和函数指针回调函数wireshark-4.0.7源码例子函数指针wireshark4.0…

kafka集群搭建(Linux环境)

zookeeper搭建,可以搭建集群,也可以单机(本地学习,没必要搭建zookeeper集群,单机完全够用了,主要学习的是kafka) 1. 首先官网下载zookeeper:Apache ZooKeeper 2. 下载好之后上传到…

自动化测试框架unittest与pytest的区别!

引言 前面文章已经介绍了python单元测试框架,大家平时经常使用的是unittest,因为它比较基础,并且可以进行二次开发,如果你的开发水平很高,集成开发自动化测试平台也是可以的。而这篇文章主要讲unittest与pytest的区别&…

Grafana - TDEngine搭建数据监测报警系统

TDengine 与开源数据可视化系统 Grafana 快速集成搭建数据监测报警系统 一、介绍二、前置条件三、Grafana 安装及配置3.1 下载3.2 安装3.2.1 windows安装 - 图形界面3.2.2 linux安装 - 安装脚本 四、Grafana的TDEngine配置及使用4.1 登录4.2 安装 Grafana Plugin 并配置数据源4…

流数据湖平台Apache Paimon(一)概述

文章目录 第1章 概述1.1 简介1.2 核心特性1.3 基本概念1.3.1 Snapshot1.3.2 Partition1.3.3 Bucket1.3.4 Consistency Guarantees一致性保证 1.4 文件布局1.4.1 Snapshot Files1.4.2 Manifest Files1.4.3 Data Files1.4.4 LSM Trees 第1章 概述 1.1 简介 Flink 社区希望能够将…

10.python设计模式【代理模式】

内容:为其他对象提供一种代理一控制对这个对象的访问 应用场景: 远程代理: 为远程的对象提供代理虚代理:根据需要创建很大的对象保护代理:控制对原始对象的访问,用于对象有不同访问权限时 UML图 举个例…

新零售行业如何做会员管理和会员营销

蚓链数字化营销系统全渠道会员管理解决方案,线上线下统一管理,打造私域流量,微信、门店会员全渠道管理,打通私域流量池,实现裂变营销: 开启新零售之路,必然要摒弃原有的管理模式,大…

实训笔记7.27

实训笔记7.27 7.27笔记一、Hive数据仓库基本概念(处理结构化数据)1.1 Hive的组成架构1.1.1 Hive的客户端1.1.2 Hive的驱动程序1.1.3 Hive的元数据库 1.2 Hive和数据库的区别 二、Hive的安装配置三、Hive的相关配置项四、Hive的基本使用方式4.1 使用Hive的…

DMA传输原理与实现详解(超详细)

DMA(Direct Memory Access,直接内存访问)是一种计算机数据传输方式,允许外围设备直接访问系统内存,而无需CPU的干预。 文章目录 Part 1: DMA的工作原理配置阶段:数据传输阶段: Part 2: DMA数据…

Jmeter+MySQL链接+JDBC Connection配置元件+使用

参考大大的博客学习:怎么用JMeter操作MySQL数据库?看完秒懂!_jmeter mysql_程序员馨馨的博客-CSDN博客 注:里面所有没打码的都是假数据,麻烦大家自行修改正确的信息。 一、背景 需要取数据库中的值,作为…

分布式操作系统会不会是操作系统的终端形态?

昨天一位网友私信我,提出一个问题:“Laxcus分布式操作系统会不会是操作系统发展的终极形态?”。今天觉得有必要把这件事说一说,所以就忙里偷闲写下这篇文章。 咱们先说结论:是也不是,需要具体情况具…

C++--菱形继承

1.什么是菱形继承 单继承:一个子类只有一个直接父类时称这个继承关系为单继承 多继承:一个子类有两个或以上直接父类时称这个继承关系为多继承 菱形继承的问题:菱形继承有数据冗余和二义性的问题,数据冗余是由于创建多个相同类型的…

Gradle和Maven的区别

Gradle和Maven 当涉及到构建和管理项目时,Gradle和Maven是两个非常流行的选项。本文将讨论Gradle和Maven之间的区别以及它们的配置信息差异。 1. Gradle和Maven的区别 1.1 构建脚本语言 Maven使用XML作为构建脚本语言,而Gradle使用基于Groovy的DSL&…

❤️创意网页:创意动态画布~缤纷移动涂鸦~图片彩色打码

✨博主:命运之光 🌸专栏:Python星辰秘典 🐳专栏:web开发(简单好用又好看) ❤️专栏:Java经典程序设计 ☀️博主的其他文章:点击进入博主的主页 前言:欢迎踏入…

【Vue】在el-table的el-table-column中,如何控制单行、单列、以及根据内容单独设置样式。例如:修改文字颜色、背景颜色

用cell-style表属性来实现。在官网中是这样表述这个属性的。 在el-table中用v-bind绑定此属性。&#xff08;v-bind的简写是&#xff1a;&#xff09; <el-table:data"options":cell-style"cell"><el-table-column prop"id" label"…

设计模式-建造者模式

在前面几篇文章中&#xff0c;已经讲解了单例模式、工厂方法模式、抽象工厂模式&#xff0c;创建型还剩下一个比较重要的模式-建造者模式。在理解该模式之前&#xff0c;我还是希望重申设计模式的初衷&#xff0c;即为解决一些问题而提供的优良方案。学习设计模式遗忘其初衷&am…

图文教程:使用 Photoshop、3ds Max 和 After Effects 创建被风暴摧毁的小屋

推荐&#xff1a; NSDT场景编辑器助你快速搭建可二次开发的3D应用场景 1. 在 Photoshop 中设置图像 步骤 1 打开 Photoshop。 打开 Photoshop 步骤 2 我已经将小屋的图像导入到Photoshop中以演示 影响。如果您愿意&#xff0c;可以使用其他图像。 图片导入 步骤 3 由于小…

css实现渐变边框动画

渐变边框动画 1、实现效果2、实现代码 1、实现效果 2、实现代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0">&…