算法学习——LeetCode力扣动态规划篇9

算法学习——LeetCode力扣动态规划篇9

在这里插入图片描述

1035. 不相交的线

1035. 不相交的线 - 力扣(LeetCode)

描述

在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足:

nums1[i] == nums2[j]
且绘制的直线不与任何其他连线(非水平线)相交。
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

示例

示例 1:
在这里插入图片描述

输入:nums1 = [1,4,2], nums2 = [1,2,4]
输出:2
解释:可以画出两条不交叉的线,如上图所示。
但无法画出第三条不相交的直线,因为从 nums1[1]=4 到 nums2[2]=4 的直线将与从 nums1[2]=2 到 nums2[1]=2 的直线相交。

示例 2:

输入:nums1 = [2,5,1,2,5], nums2 = [10,5,2,1,5,2]
输出:3

示例 3:

输入:nums1 = [1,3,7,1,7,5], nums2 = [1,9,2,5,1]
输出:2

提示

1 <= nums1.length, nums2.length <= 500
1 <= nums1[i], nums2[j] <= 2000

代码解析

动态规划

本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!

那么本题就和我们刚刚讲过的这道题目动态规划:1143.最长公共子序列 就是一样一样的了。

class Solution {
public:
    int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
        vector<vector<int>> dp(nums1.size()+1 , vector<int>(nums2.size()+1,0));
     
        for(int i=0 ; i<nums1.size();i++)
        {
            for(int j=0 ; j<nums2.size();j++)
            {
               if(nums1[i]==nums2[j])
                    dp[i+1][j+1] = dp[i][j]+1;
               else
                    dp[i+1][j+1] = max(dp[i+1][j] , dp[i][j+1]);
            }
        }
        // for(int i=0 ; i<nums1.size();i++)
        // {
        //     for(int j=0 ; j<nums2.size();j++)
        //     {
        //         cout<<dp[i][j]<<' ';
        //     }
        //     cout<<endl;
        // }
   
        return dp[nums1.size()][nums2.size()];
    }
};

53. 最大子数组和

53. 最大子数组和 - 力扣(LeetCode)

描述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组
是数组中的一个连续部分。

示例

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示

1 <= nums.length <= 105
-104 <= nums[i] <= 104

代码解析

贪心算法
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        
        int sum=0 ,result= INT32_MIN;      //sum是当前数组的和,result是sum中最大的时候
        for(int i=0 ; i<nums.size() ;i++)
        {
            sum += nums[i];  //记录当前的sum
            if(sum > result) result= sum;  //如果sum大于当前result,更新result
            if(sum < 0) sum = 0;  //某一个时期的sum小于0舍去
        }
        return result;
    }
};
动态规划
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        vector<int>  dp(nums.size() ,0);
        int result = INT_MIN;
        dp[0]= nums[0];
        for(int i=1 ; i<nums.size() ;i++)
        {
            dp[i] = max(nums[i],dp[i-1]+nums[i]);
        }
        for(int i=0 ; i<nums.size() ;i++) 
        {
            // cout<<dp[i]<<' ';
            if(dp[i] > result) result = dp[i];
        }
        return result;
    }
};

392. 判断子序列

392. 判断子序列 - 力扣(LeetCode)

描述

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

进阶

如果有大量输入的 S,称作 S1, S2, … , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

示例

示例 1:

输入:s = “abc”, t = “ahbgdc”
输出:true

示例 2:

输入:s = “axc”, t = “ahbgdc”
输出:false

提示

0 <= s.length <= 100
0 <= t.length <= 10^4
两个字符串都只由小写字符组成。

代码解析

动态规划
class Solution {
public:
    bool isSubsequence(string s, string t) {
        if(s.size()==0&&t.size()!=0) return true;
        if(s.size()==0&&t.size()==0) return true;
        if(s.size()!=0&&t.size()==0) return false;

        vector<bool> dp(s.size() , false);
        int prt = 0;//匹配指针
        for(int i=0 ; i<t.size() ;i++)
        {
            if(s[prt] == t[i])//匹配成功标记,匹配下一个
            {
                dp[prt] = true;
                prt++;
            }
        }

        return dp[s.size()-1];
    }
};

115. 不同的子序列

115. 不同的子序列 - 力扣(LeetCode)

代码描述

给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 109 + 7 取模。

示例

示例 1:

输入:s = “rabbbit”, t = “rabbit”
输出:3
解释:
如下所示, 有 3 种可以从 s 中得到 “rabbit” 的方案。
rabbbit
rabbbit
rabbbit

示例 2:

输入:s = “babgbag”, t = “bag”
输出:5
解释:
如下所示, 有 5 种可以从 s 中得到 “bag” 的方案。
babgbag
babgbag
babgbag
babgbag
babgbag

提示

1 <= s.length, t.length <= 1000
s 和 t 由英文字母组成

代码解析

动态规划
  • 确定dp数组(dp table)以及下标的含义
    dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

  • 确定递推公式
    这一类问题,基本是要分析两种情况

    • s[i - 1] 与 t[j - 1]相等
      dp[i][j]可以有两部分组成。
      一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。
      一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。
      dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
    • s[i - 1] 与 t[j - 1] 不相等
      dp[i][j] = dp[i - 1][j];
  • dp数组如何初始化

    • dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。
      那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

    • 再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。
      那么dp[0][j]一定都是0,s如论如何也变成不了t。

    • 最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。
      dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。
      在这里插入图片描述

class Solution {
public:
    int numDistinct(string s, string t) {
        vector<vector<uint64_t>> dp(s.size()+1 , vector<uint64_t>(t.size()+1,0) );

        for(int i=1 ; i<s.size()+1 ;i++)
            dp[i][0] = 1;
        for(int j=1 ;j<t.size()+1 ;j++)
            dp[0][j] = 0;

        dp[0][0] = 1;

        for(int i=0 ; i<s.size() ;i++)
        {
            for(int j=0 ;j<t.size();j++)
            {
                if(s[i]==t[j]) dp[i+1][j+1] = dp[i][j] + dp[i][j+1];
                else dp[i+1][j+1] = dp[i][j+1];
            }
        }
        return dp[s.size()][t.size()];
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/503734.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CCPC2020 - 秦皇岛 - G. Good Number (数学)

亚历克斯喜欢数字。 亚历克斯认为&#xff0c;正整数 x x x 是好数&#xff0c;当且仅当 ⌊ x k ⌋ \lfloor \sqrt[k]{x} \rfloor ⌊kx ​⌋ 整除 x x x 。 你能告诉他不超过 n n n 的正整数的个数吗&#xff1f; 输入 输入的第一行给出了测试用例的数量 T ( 1 ≤ T ≤…

Pytorch 下载失败原因

错误信息&#xff1a; ERROR: Could not find a version that satisfies the requirement torch (from versions: none) ERROR: No matching distribution found for torch 解决方案&#xff1a; 在官网看到&#xff0c;它需要python3.8-3.11的环境。过高和过低的版本都不…

python学习16:python中的布尔类型和条件语句的学习

python中的布尔类型和条件语句的学习 1.布尔&#xff08;bool&#xff09;类型的定义&#xff1a; 布尔类型的字面量&#xff1a;True表示真&#xff08;是、肯定&#xff09; False表示假&#xff08;否、否定&#xff09; True本质上是一个数字记作1&#xff0c;False记作0 …

208基于matlab的多目标遗传算法的无人机航路规划

基于matlab的多目标遗传算法的无人机航路规划。在三维航路中进行航路代价估计&#xff0c;综合考虑路径长度、隐蔽性、危险度&#xff0c;规划出最优路径。输出3D规划路径。程序已调通&#xff0c;可直接运行。 208 多目标遗传算法 无人机航路规划 - 小红书 (xiaohongshu.com)

力扣---网络延迟时间---迪杰斯特拉,弗洛伊德floyd

首先推荐博客&#xff1a;图论最短路径专题&#xff08;力扣743、5888&#xff09;_力扣 最短路径-CSDN博客 迪杰斯特拉算法&#xff1a; 太久没有做图论的题了&#xff0c;&#xff0c;临时抱佛脚。。 这道题可以转化为max{点x到点k的距离}。因为带权图&#xff08;权值为正…

手机投屏到windows11电脑

1 安装无线投影组件 2 电脑端打开允许其他设备投影的开关 3 手机找到投屏选项 4 手机搜索可用设备连接即可 这里的官方文档给的不太好,给了一些让人眼花撩乱的信息,以下是经过整合的有效信息

Linux 给网卡配置ip

ip addr | grep eth9 ifconfig eth9 10.0.0.2 netmask 255.255.255.0 up

(十三)图像的拉普拉斯梯度锐化

环境&#xff1a;Windows10专业版 IDEA2021.2.3 jdk11.0.1 OpenCV-460.jar 系列文章&#xff1a; &#xff08;一&#xff09;PythonGDAL实现BSQ&#xff0c;BIP&#xff0c;BIL格式的相互转换 &#xff08;二&#xff09;BSQ,BIL,BIP存储格式的相互转换算法 &#xff08;三…

U盘位置不可用,如何轻松应对数据恢复难题

在日常工作和生活中&#xff0c;U盘作为一种便捷的存储设备&#xff0c;经常被用于数据传输和备份。然而&#xff0c;有时我们可能会遇到这样一个问题&#xff1a;当插入U盘时&#xff0c;系统提示“位置不可用”或“无法访问”&#xff0c;这让人倍感困扰。面对这种情况&#…

JavaScript:快速入门

1. 数据类型 /** * 数据类型: number(包含整数、小数) * string&#xff08;字符串类型&#xff09; * boolean&#xff08;布尔类型&#xff09; * object&#xff08;对象类型&#xff09; * function&#xff08;函数类型&#xff09; …

使用python将pdf插入到docx中

from pdf2image import convert_from_path from docx import Document from docx.shared import Inches,Cm# 将PDF转换为图片 pages convert_from_path(4.pdf, 200) # 200是DPI&#xff0c;可以根据需要调整doc Document()# 计算图片在docx中应该显示的宽度 img_width Cm(2…

单细胞RNA测序(scRNA-seq)细胞分离与扩增

单细胞RNA测序入门可以查看以下文章&#xff1a; 单细胞RNA测序&#xff08;scRNA-seq&#xff09;工作流程入门 1. 单细胞的分离 如何获得单细胞&#xff0c;从而进行下一步的测序过程&#xff1f;具体有以下几种方法&#xff1a; 一、流式细胞仪(FACS)方法 常用的方法之…

深度学习基础模型之Mamba

Mamba模型简介 问题&#xff1a;许多亚二次时间架构(运行时间复杂度低于O(n^2)&#xff0c;但高于O(n)的情况)&#xff08;例如线性注意力、门控卷积和循环模型以及结构化状态空间模型&#xff08;SSM&#xff09;&#xff09;已被开发出来&#xff0c;以解决 Transformer 在长…

LabVIEW转动设备故障诊断系统

LabVIEW转动设备故障诊断系统 随着工业自动化技术的不断进步&#xff0c;转动设备在电力、化工、船舶等多个行业中扮演着越来越重要的角色。然而&#xff0c;这些设备在长期运行过程中难免会出现故障&#xff0c;如果不能及时诊断和处理&#xff0c;将会导致生产效率下降&…

05. 【Android教程】Android 程序签名打包

在上一章&#xff0c;我们创建了自己的 Android 工程&#xff0c;并成功的在模拟器中运行起来。同时提到&#xff0c;工程目录中有一个 bin 目录&#xff0c;运行之后我们可以在此目录下找到我们的 apk。那么不难想到&#xff0c;我们在点“Run”之后&#xff0c;系统会编译我们…

[技术笔记] Flash选型之基础知识芯片分类

1、按照接口分类 分为 Serial串口Flash 和 Parallel并口Flash&#xff1b; 市场大量使用Serial Flash&#xff1b;价格便宜&#xff1b;已满足系统对数据读写速度的要求&#xff1b; Serial Flash已经可以代表 NOR Flash&#xff1b; 小知识&#xff1a; 1&#xff09;在…

深度学习算法概念介绍

前言 深度学习算法是一类基于人工神经网络的机器学习方法&#xff0c;其核心思想是通过多层次的非线性变换&#xff0c;从数据中学习表示层次特征&#xff0c;从而实现对复杂模式的建模和学习。深度学习算法在图像识别、语音识别、自然语言处理等领域取得了巨大的成功&#xf…

Linux基础篇:VMware虚拟机3种常用的网络模式介绍

VMware虚拟机3种常用的网络模式介绍 VMware虚拟机提供了几种不同的网络连接模式&#xff0c;以满足不同场景下的网络需求。以下是VMware虚拟机的三种主要网络模式&#xff1a; 1.桥接模式&#xff08;Bridged Mode&#xff09;网卡名称VMnet0 桥接模式允许虚拟机直接连接到物…

鸿蒙OS开发实例:【瀑布流式图片浏览】

介绍 瀑布流式展示图片文字&#xff0c;在当前产品设计中已非常常见&#xff0c;本篇将介绍关于WaterFlow的图片浏览场景&#xff0c;顺便集成Video控件&#xff0c;以提高实践的趣味性 准备 请参照[官方指导]&#xff0c;创建一个Demo工程&#xff0c;选择Stage模型熟读Har…

解决前后端通信跨域问题

因为浏览器具有同源策略的效应。 同源策略是一个重要的网络安全机制&#xff0c;用于Web浏览器中&#xff0c;以防止一个网页文档或脚本来自一个源&#xff08;域、协议和端口&#xff09;&#xff0c;获取另一个源的数据。同源策略的目的是保护用户的隐私和安全&#xff0c;防…