JUC/多线程原理(三)

一、Monitor 原理

二、synchronized 原理

(一)、基础

 synchronized 即使内部抛出异常也会释放锁

(二)、轻量级锁

轻量级锁的使用场景:如果一个对象虽然有多线程要加锁,但加锁的时间是错开的(也就是 没有竞争 ),那么可以 使用轻量级锁来优化。(A白天用,B晚上用)
轻量级锁对使用者是透明的,即语法仍然是 synchronized
例子:
method1加了锁,method2也加了锁,在method1中调用了method2。
从执行顺序上讲method中的两个锁是没有竞争的。
但是method1加了锁之后,method2应该无法再次加锁,此时用到了锁重入(同一个线程内对同一个对象加锁只会加一次)。
static final Object obj = new Object();
public static void method1() {
    synchronized( obj ) {
        // 同步块 A
        method2();
    }
}
public static void method2() {
    synchronized( obj ) {
        // 同步块 B
    }
}

创建轻量级锁的过程

(三)、锁膨胀

当轻量级锁加锁失败时,会将轻量级锁升级为Monitor锁

(三)、自旋优化

重量级锁竞争的时候,还可以使用自旋来进行优化,如果当前线程自旋成功(即这时候持锁线程已经退出了同步块,释放了锁),这时当前线程就可以避免阻塞。

注意:

  • 自旋会占用 CPU 时间,单核 CPU 自旋就是浪费,多核 CPU 自旋才能发挥优势。
  • Java 6 之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能性会高,就多自旋几次;反之,就少自旋甚至不自旋,总之,比较智能。
  • Java 7 之后不能控制是否开启自旋功能

(四)、偏向锁

1、基本概念2

轻量级锁在没有竞争时(就自己这个线程),每次重入仍然需要执行 CAS 操作(生成锁记录、尝试替换对象的MarkWord)。
Java 6 中引入了偏向锁来做进一步优化:只有第一次使用 CAS 将线程 ID 设置到对象的 Mark Word 头,之后发现这个线程 ID 是自己的就表示没有竞争,不用重新 CAS 。以后只要不发生竞争,这个对象就归该线程所有。

例如:

static final Object obj = new Object();

public static void m1() {
    synchronized (obj) {
        // 同步块 A
        m2();
    }
}

public static void m2() {
    synchronized (obj) {
        // 同步块 B
        m3();
    }
}

public static void m3() {
    synchronized (obj) {
    }
}
对象头格式
|--------------------------------------------------------------------|--------------------|
| Mark Word (64 bits)                                                | State              |
|--------------------------------------------------------------------|--------------------|
| unused:25 | hashcode:31 | unused:1 | age:4 | biased_lock:0 | 01    | Normal             |
|--------------------------------------------------------------------|--------------------|
| thread:54 | epoch:2 | unused:1 | age:4 | biased_lock:1 | 01        | Biased(偏向锁)     |
|--------------------------------------------------------------------|--------------------|
| ptr_to_lock_record:62 | 00                                         | Lightweight Locked |
|--------------------------------------------------------------------|--------------------|
| ptr_to_heavyweight_monitor:62 | 10                                 | Heavyweight Locked |
|--------------------------------------------------------------------|--------------------|
| | 11                                                               | Marked for GC      |
|--------------------------------------------------------------------|--------------------|

轻量级锁(00),存储锁记录的指针

重量级锁(10),存储重量级锁的指针

注意:

  • 适用于单线程下用带锁的方法
  • 如果开启了偏向锁(默认开启),那么对象创建后,markword 值为 0x05 即最后 3 位为 101,这时它的thread、epochage 都为 0
  • 偏向锁是默认是延迟的,不会在程序启动时立即生效,如果想避免延迟,可以加 VM 参数 - XX:BiasedLockingStartupDelay=0 来禁用延迟
  • 如果没有开启偏向锁,那么对象创建后,markword 值为 0x01 即最后 3 位为 001,这时它的 hashcode、 age 都为 0,第一次用到 hashcode 时才会赋
  • 在代码运行时在添加 VM 参数 - XX: - UseBiasedLocking 禁用偏向锁

2、撤销偏向锁

(1)、调用了对象的 hashCode,但偏向锁的对象 MarkWord 中存储的是线程 id,如果调用 hashCode 会导致偏向锁被(为了存储hashcode没有地方存储线程id了)

  • 轻量级锁会在锁记录中记录 hashCode
  • 重量级锁会在 Monitor 中记录 hashCode

 (2)、当有其它线程使用偏向锁对象时,会将偏向锁升级为轻量级锁(A线程加了偏向锁之后运行完成,然后B线程加锁)

(3)、使用wait/notify时

3、批量重偏向

如果对象虽然被多个线程访问,但没有竞争,这时偏向了线程 T1 的对象仍有机会重新偏向 T2 ,重偏向会重置对象的 Thread ID
当撤销偏向锁阈值超过 20 次后, jvm 会这样觉得,我是不是偏向错了呢,于是会在给这些对象加锁时重新偏向至加锁线程。
例如:
private static void test3() throws InterruptedException {
    Vector<Dog> list = new Vector<>();
    Thread t1 = new Thread(() -> {
        for (int i = 0; i < 30; i++) {
            Dog d = new Dog();
            list.add(d);
            synchronized (d) {
                log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
            }
        }
        synchronized (list) {
            list.notify();
        }
    }, "t1");
    t1.start();

    Thread t2 = new Thread(() -> {
        synchronized (list) {
            try {
                list.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        log.debug("===============> ");
        for (int i = 0; i < 30; i++) {
            Dog d = list.get(i);
            log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
            synchronized (d) {
                log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
            }
            log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
        }
    }, "t2");
    t2.start();
}

在t2线程中,前20次对象都是偏向线程t1的,但是撤销20次之后,剩下的对象全部偏向于t2线程。

批量重偏向不是批量执行的。而是说本来偏向锁只会偏向第一个锁定它的线程,之后再有线程就会是轻量锁。但因为撤销达到20次所以该类的对象当被锁定时再次被赋予偏向的能力

4、批量撤销

当撤销偏向锁阈值超过 40 次后, jvm 会这样觉得,自己确实偏向错了,根本就不该偏向。于是整个类的所有对象都会变为不可偏向的,新建的对象也是不可偏向的。

5、锁消除

JIT对于热点代码进行优化,把不需要加锁但加了锁的地方进行优化

三、join原理

运用了模式中的保护性暂停

public final synchronized void join(long millis)throws InterruptedException {
        long base = System.currentTimeMillis();
        long now = 0;

        if (millis < 0) {
            throw new IllegalArgumentException("timeout value is negative");
        }

        if (millis == 0) {
            while (isAlive()) {
                wait(0);
            }
        } else {
            while (isAlive()) {
                long delay = millis - now;
                if (delay <= 0) {
                    break;
                }
                wait(delay);
                now = System.currentTimeMillis() - base;
            }
        }
    }

四、park/unpark

五、重新理解线程状态转换

1 NEW --> RUNNABLE

当调用 t.start() 方法时,由 NEW -- > RUNNABLE

2 RUNNABLE <--> WAITING

t 线程 synchronized(obj) 获取了对象锁后
调用 obj.wait() 方法时, t 线程 RUNNABLE -- > WAITING
调用 obj.notify() obj.notifyAll() t.interrupt()
竞争锁成功, t 线程 WAITING -- > RUNNABLE
竞争锁失败, t 线程 WAITING -- > BLOCKED

3 RUNNABLE <--> WAITING

当前线程 调用 t.join() 方法时, 当前线程 RUNNABLE -- > WAITING
注意是 当前线程 t 线程对象 的监视器上等待
t 线程 运行结束,或调用了 当前线程 interrupt() 时, 当前线程 WAITING -- > RUNNABLE

4 RUNNABLE <--> WAITING

当前线程调用 LockSupport.park() 方法会让当前线程从 RUNNABLE -- > WAITING
调用 LockSupport.unpark( 目标线程 ) 或调用了线程 的 interrupt() ,会让目标线程从 WAITING -- >
RUNNABLE

5 RUNNABLE <--> TIMED_WAITING

t 线程 synchronized(obj) 获取了对象锁后
调用 obj.wait(long n) 方法时, t 线程 RUNNABLE -- > TIMED_WAITING
t 线程 等待时间超过了 n 毫秒,或调用 obj.notify() obj.notifyAll() t.interrupt()
竞争锁成功, t 线程 TIMED_WAITING -- > RUNNABLE
竞争锁失败, t 线程 TIMED_WAITING -- > BLOCKED

6 RUNNABLE <--> TIMED_WAITING

当前线程 调用 t.join(long n) 方法时, 当前线程 RUNNABLE -- > TIMED_WAITING
注意是 当前线程 t 线程对象 的监视器上等待
当前线程 等待时间超过了 n 毫秒,或 t 线程 运行结束,或调用了 当前线程 interrupt() 时, 当前线程
TIMED_WAITING -- > RUNNABLE

7 RUNNABLE <--> TIMED_WAITING

当前线程调用 Thread.sleep(long n) ,当前线程从 RUNNABLE -- > TIMED_WAITING
当前线程 等待时间超过了 n 毫秒, 当前线程 TIMED_WAITING -- > RUNNABLE

8 RUNNABLE <--> TIMED_WAITING

当前线程调用 LockSupport.parkNanos(long nanos) LockSupport.parkUntil(long millis) 时, 当前线 RUNNABLE -- > TIMED_WAITING
调用 LockSupport.unpark( 目标线程 ) 或调用了线程 的 interrupt() ,或是等待超时,会让目标线程从TIMED_WAITING-- > RUNNABLE

9 RUNNABLE <--> BLOCKED

t 线程 synchronized(obj) 获取了对象锁时如果竞争失败,从 RUNNABLE -- > BLOCKED
obj 锁线程的同步代码块执行完毕,会唤醒该对象上所有 BLOCKED 的线程重新竞争,如果其中 t 线程 竞争成功,从 BLOCKED -- > RUNNABLE ,其它失败的线程仍然 BLOCKED

10 RUNNABLE <--> TERMINATED

当前线程所有代码运行完毕,进入 TERMINATED

六、死锁

有这样的情况:一个线程需要同时获取多把锁,这时就容易发生死锁
t1 线程 获得 A 对象 锁,接下来想获取 B 对象 的锁 t2 线程 获得 B 对象 锁,接下来想获取 A 对象 的锁

七、活锁

活锁出现在两个线程互相改变对方的结束条件,最后谁也无法结束,例如
package com.itcast.test;

import lombok.extern.slf4j.Slf4j;

@Slf4j(topic = "c.Test7")
public class Test7 {
    static volatile int count = 10;
    static final Object lock = new Object();

    public static void main(String[] args){
        new Thread(() -> {
            // 期望减到 0 退出循环
            while (count > 0) {
                try {
                    Thread.sleep(200);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                count--;
                log.debug("count: {}", count);
            }
        }, "t1").start();
        new Thread(() -> {
            // 期望超过 20 退出循环
            while (count < 20) {
                try {
                    Thread.sleep(200);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                count++;
                log.debug("count: {}", count);
            }
        }, "t2").start();
    }
}
}

八、饥饿

很多教程中把饥饿定义为,一个线程由于优先级太低,始终得不到 CPU 调度执行,也不能够结束,饥饿的情况不易演示,讲读写锁时会涉及饥饿问题

九、共享模型之内存

(一)、JMM

JMM Java Memory Model ,它定义了主存、工作内存抽象概念,底层对应着 CPU 寄存器、缓存、硬件内存、CPU 指令优化等。
JMM 体现在以下几个方面
  • 原子性 - 保证指令不会受到线程上下文切换的影响
  • 可见性 - 保证指令不会受 cpu 缓存的影响
  • 有序性 - 保证指令不会受 cp

(二)、可见性(volatile)

退不出的循环
        static boolean run = true;
        public static void main(String[] args) throws InterruptedException {
            Thread t = new Thread(()->{
                while(run){
                    // ....
                }
            });
            t.start();
            sleep(1);
            run = false; // 线程t不会如预想的停下来
        }

解决方法

volatile static boolean run = true;

注意:如果对改为

while(true){
    synchronized(this){
        if(!run)  break;
    }
}

加了锁之后,不用加volatile也可以

(三)、有序性

1、指令重排

2、出错的结果

int num = 0;
boolean ready = false;
// 线程1 执行此方法
public void actor1(I_Result r) {
    if(ready) {
        r.r1 = num + num;
    } else {
        r.r1 = 1;
    }
}
// 线程2 执行此方法
public void actor2(I_Result r) {
    num = 2;
    ready = true;
}

如果actor2发生了指令重排,有可能结果会出现等于0的情况

3、解决方法

volatile boolean ready = false;

将ready添加volatile关键字,可以防止ready前面的指令发生重排,所以不需要将num也添加volatile关键字 

十、volatile原理

volatile 的底层实现原理是内存屏障, Memory Barrier Memory Fence
volatile 变量的写指令后会加入写屏障
volatile 变量的读指令前会加入读屏障

(一)、如何保证可见性

写屏障( sfence )保证在该屏障之前的,对共享变量的改动,都同步到主存当中
public void actor2(I_Result r) {
 num = 2;
 ready = true; // ready 是 volatile 赋值带写屏障
 // 写屏障
}
而读屏障( lfence )保证在该屏障之后,对共享变量的读取,加载的是主存中最新数据
public void actor1(I_Result r) {
 // 读屏障
 // ready 是 volatile 读取值带读屏障
 if(ready) {
     r.r1 = num + num;
 } else {
     r.r1 = 1;
 }
}

(二)、如何保证有序性

写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
public void actor2(I_Result r) {
 num = 2;
 ready = true; // ready 是 volatile 赋值带写屏障
 // 写屏障
}
读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前
public void actor1(I_Result r) {
 // 读屏障
 // ready 是 volatile 读取值带读屏障
 if(ready) {
     r.r1 = num + num;
 } else {
     r.r1 = 1;
 }
}

(三)、double-checked locking 问题

以著名的 double-checked locking 单例模式为例
public final class Singleton {
    private Singleton() { }
    private static Singleton INSTANCE = null;
    public static Singleton getInstance() {
        if(INSTANCE == null) { // t2
            // 首次访问会同步,而之后的使用没有 synchronized
            synchronized(Singleton.class) {
                if (INSTANCE == null) { // t1
                    INSTANCE = new Singleton();
                }
            }
        }
        return INSTANCE;
    }
}

(四)、double-checked locking 解决

private static volatile Singleton INSTANCE = null;

(五)、happens-before

十一、LongAdder原理

LongAdder 类有几个关键域
// 累加单元数组, 懒惰初始化
transient volatile Cell[] cells;
// 基础值, 如果没有竞争, 则用 cas 累加这个域
transient volatile long base;
// 在 cells 创建或扩容时, 置为 1, 表示加锁
transient volatile int cellsBusy;

(一)、cas锁

// 不要用于实践!!!
public class LockCas {
    private AtomicInteger state = new AtomicInteger(0);
    public void lock() {
        while (true) {
            if (state.compareAndSet(0, 1)) {
                break;
            }
        }
    }
    public void unlock() {
        log.debug("unlock...");
        state.set(0);
    }
}

测试

LockCas lock = new LockCas();
new Thread(() -> {
    log.debug("begin...");
    lock.lock();
    try {
    log.debug("lock...");
    sleep(1);
    } finally {
    lock.unlock();
    }
    }).start();
    new Thread(() -> {
    log.debug("begin...");
    lock.lock();
    try {
    log.debug("lock...");
    } finally {
    lock.unlock();
    }
    }).start();

(二)、原理之伪共享

其中 Cell 即为累加单元
// 防止缓存行伪共享
@sun.misc.Contended
static final class Cell {
    volatile long value;
    Cell(long x) { value = x; }

    // 最重要的方法, 用来 cas 方式进行累加, prev 表示旧值, next 表示新值
    final boolean cas(long prev, long next) {
        return UNSAFE.compareAndSwapLong(this, valueOffset, prev, next);
    }
    // 省略不重要代码
}

累加主要调用下面的方法
public void add(long x) {
    // as 为累加单元数组
    // b 为基础值
    // x 为累加值
    Cell[] as;
    long b, v;
    int m;
    Cell a;
    // 进入 if 的两个条件
    // 1. as 有值, 表示已经发生过竞争, 进入 if
    // 2. cas 给 base 累加时失败了, 表示 base 发生了竞争, 进入 if
    if ((as = cells) != null || !casBase(b = base, b + x)) {
        // uncontended 表示 cell 没有竞争
        boolean uncontended = true;
        if (
            // as 还没有创建
                as == null || (m = as.length - 1) < 0 ||
                        // 当前线程对应的 cell 还没有
                        (a = as[getProbe() & m]) == null ||
                        // cas 给当前线程的 cell 累加失败 uncontended=false ( a 为当前线程的 cell )
                        !(uncontended = a.cas(v = a.value, v + x))
        ) {
            // 进入 cell 数组创建、cell 创建的流程
            longAccumulate(x, null, uncontended);
        }
    }
}

final void longAccumulate(long x, LongBinaryOperator fn,
                          boolean wasUncontended) {
    int h;
    // 当前线程还没有对应的 cell, 需要随机生成一个 h 值用来将当前线程绑定到 cell
    if ((h = getProbe()) == 0) {
        // 初始化 probe
        ThreadLocalRandom.current();
        // h 对应新的 probe 值, 用来对应 cell
        h = getProbe();
        wasUncontended = true;
    }
    // collide 为 true 表示需要扩容
    boolean collide = false;
    for (; ; ) {
        Cell[] as;
        Cell a;
        int n;
        long v;
        // 已经有了 cells
        if ((as = cells) != null && (n = as.length) > 0) {
            // 还没有 cell
            if ((a = as[(n - 1) & h]) == null) {
                // 为 cellsBusy 加锁, 创建 cell, cell 的初始累加值为 x
                // 成功则 break, 否则继续 continue 循环
            }
            // 有竞争, 改变线程对应的 cell 来重试 cas
            else if (!wasUncontended)
                wasUncontended = true;
                // cas 尝试累加, fn 配合 LongAccumulator 不为 null, 配合 LongAdder 为 null
            else if (a.cas(v = a.value, ((fn == null) ? v + x : fn.applyAsLong(v, x))))
                break;
                // 如果 cells 长度已经超过了最大长度, 或者已经扩容, 改变线程对应的 cell 来重试 cas
            else if (n >= NCPU || cells != as)
                collide = false;
                // 确保 collide 为 false 进入此分支, 就不会进入下面的 else if 进行扩容了
            else if (!collide)
                collide = true;
                // 加锁
            else if (cellsBusy == 0 && casCellsBusy()) {
                // 加锁成功, 扩容
                continue;
            }
            // 改变线程对应的 cell
            h = advanceProbe(h);
        }
        // 还没有 cells, 尝试给 cellsBusy 加锁
        else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
            // 加锁成功, 初始化 cells, 最开始长度为 2, 并填充一个 cell
            // 成功则 break;
        }
        // 上两种情况失败, 尝试给 base 累加
        else if (casBase(v = base, ((fn == null) ? v + x : fn.applyAsLong(v, x))))
            break;
    }
}

获取最终结果通过 sum 方法
public long sum() {
    Cell[] as = cells; Cell a;
    long sum = base;
    if (as != null) {
        for (int i = 0; i < as.length; ++i) {
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum;
}

十二、不可变设计

string

public final class String
        implements java.io.Serializable, Comparable<String>, CharSequence {
    /** The value is used for character storage. */
    private final char value[];
    /** Cache the hash code for the string */
    private int hash; // Default to 0

    // ...

}

十三、final原理

十四、AQS原理

(一)、概述

(二)、实现不可重入锁

final class MySync extends AbstractQueuedSynchronizer {
    @Override
    protected boolean tryAcquire(int acquires) {
        if (acquires == 1) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
        }
        return false;
    }

    @Override
    protected boolean tryRelease(int acquires) {
        if (acquires == 1) {
            if (getState() == 0) {
                throw new IllegalMonitorStateException();
            }
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }
        return false;
    }

    protected Condition newCondition() {
        return new ConditionObject();
    }

    @Override
    protected boolean isHeldExclusively() {
        return getState() == 1;
    }
}
class MyLock implements Lock {
    static MySync sync = new MySync();
    @Override
    // 尝试,不成功,进入等待队列
    public void lock() {
        sync.acquire(1);
    }
    @Override
    // 尝试,不成功,进入等待队列,可打断
    public void lockInterruptibly() throws InterruptedException {
        sync.acquireInterruptibly(1);
    }
    @Override
    // 尝试一次,不成功返回,不进入队列
    public boolean tryLock() {
        return sync.tryAcquire(1);
    }
    @Override
    // 尝试,不成功,进入等待队列,有时限
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
        return sync.tryAcquireNanos(1, unit.toNanos(time));
    }
    @Override
    // 释放锁
    public void unlock() {
        sync.release(1);
    }
    @Override
    // 生成条件变量
    public Condition newCondition() {
        return sync.newCondition();
    }
}

十五、ReentrantLock 原理

(一)、非公平锁实现原理

1、加锁解锁流程

先从构造器开始看,默认为非公平锁实现
public ReentrantLock() {
    sync = new NonfairSync();
}
NonfairSync 继承自 AQS
没有竞争时

加锁流程

  1. 构造器构造,默认构造非公平锁
  2. (无竞争,第一个线程尝试加锁时)加锁,luck(),
    final void lock() {
        // 首先用 cas 尝试(仅尝试一次)将 state 从 0 改为 1, 如果成功表示获得了独占锁
        if (compareAndSetState(0, 1))
            setExclusiveOwnerThread(Thread.currentThread());
        else
            // 如果尝试失败,进入 ㈠
            acquire(1);
    }

    首先尝试将锁的state改为1,如果修改成功,则将拥有锁的线程修改位为当前线程

  3. 当第一个竞争线程出现时,竞争线程尝试加锁,无法将state由0改为1,竞争线程进入方法acquire(1);
    // ㈠ AQS 继承过来的方法, 方便阅读, 放在此处
    public final void acquire(int arg) {
        // ㈡ tryAcquire
        if (
            !tryAcquire(arg) &&
            // 当 tryAcquire 返回为 false 时, 先调用 addWaiter ㈣, 接着 acquireQueued ㈤
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
        ) {
            selfInterrupt();
        }
    }
  4. 线程进入tryAcquire(arg)方法,再次尝试加锁,如果成功 !(tryAcquire(arg)) = false,退出流程,加锁成功
  5. 再次加锁失败!(tryAcquire(arg)) = true,进入  acquireQueued(addWaiter(Node.EXCLUSIVE), arg)方法
  6. 先执行addWaiter(Node.EXCLUSIVE)方法,该方法是构造 Node 队列,在第一个竞争线程执行该方法时,除了创造关联本线程的节点,还会创造一个哑元节点(该节点就是列表的head节点,NonfairSync中的head也指向该节点),默认初始状态都为0,形成双向列表,返回值时关联竞争线程的那个Node节点
  7. 执行acquireQueued(addWaiter(Node.EXCLUSIVE), arg)方法,
    // AQS 继承过来的方法, 方便阅读, 放在此处
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (; ; ) {
                final Node p = node.predecessor();
                // 上一个节点是 head, 表示轮到自己(当前线程对应的 node)了, 尝试获取
                if (p == head && tryAcquire(arg)) {
                    // 获取成功, 设置自己(当前线程对应的 node)为 head
                    setHead(node);
                    // 上一个节点 help GC
                    p.next = null;
                    failed = false;
                    // 返回中断标记 false
                    return interrupted;
                }
                if (
                    // 判断是否应当 park, 进入 ㈦
                        shouldParkAfterFailedAcquire(p, node) &&
                                // park 等待, 此时 Node 的状态被置为 Node.SIGNAL ㈧
                                parkAndCheckInterrupt()
                ) {
                    interrupted = true;
                }
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
  8. 进入到for(;;)循环,找出当前节点的前驱节点定义为p,此时p就是哑元节点,此时                 p == head,再次尝试获取锁(如果当前节点是排在第二位的节点,就可以尝试再次加锁),如果尝试加锁成功

  9. 尝试加锁失败,执行

    if(
        // 判断是否应当 park, 进入 ㈦
        shouldParkAfterFailedAcquire(p,node)&&
        // park 等待, 此时 Node 的状态被置为 Node.SIGNAL ㈧
        parkAndCheckInterrupt()
        ){
        interrupted=true;
    }
  10. 执行shouldParkAfterFailedAcquire(p,node)方法

    //  AQS 继承过来的方法, 方便阅读, 放在此处
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        // 获取上一个节点的状态
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL) { //Node.SIGNAL = -1
            // 上一个节点都在阻塞, 那么自己也阻塞好了
            return true;
        }
        // > 0 表示取消状态
        if (ws > 0) {
            // 上一个节点取消, 那么重构删除前面所有取消的节点, 返回到外层循环重试
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            // 这次还没有阻塞
            // 但下次如果重试不成功, 则需要阻塞,这时需要设置上一个节点状态为 Node.SIGNAL
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }
  11. 由于pred(p)的状态=0,所以进入compareAndSetWaitStatus(pred, ws, Node.SIGNAL),该方法时将pred(p)的状态改为-1,结束方法,返回false

  12. 回到之前的代码,进行下一次循环,再次执行if (p == head && tryAcquire(arg)),再次尝试加锁,如果成功,...... ,失败,进入

    if(
        // 判断是否应当 park, 进入 ㈦
        shouldParkAfterFailedAcquire(p,node)&&
        // park 等待, 此时 Node 的状态被置为 Node.SIGNAL ㈧
        parkAndCheckInterrupt()
        ){
        interrupted=true;
    }
    // AQS 继承过来的方法, 方便阅读, 放在此处
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (; ; ) {
                final Node p = node.predecessor();
                // 上一个节点是 head, 表示轮到自己(当前线程对应的 node)了, 尝试获取
                if (p == head && tryAcquire(arg)) {
                    // 获取成功, 设置自己(当前线程对应的 node)为 head
                    setHead(node);
                    // 上一个节点 help GC
                    p.next = null;
                    failed = false;
                    // 返回中断标记 false
                    return interrupted;
                }
                if (
                    // 判断是否应当 park, 进入 ㈦
                        shouldParkAfterFailedAcquire(p, node) &&
                                // park 等待, 此时 Node 的状态被置为 Node.SIGNAL ㈧
                                parkAndCheckInterrupt()
                ) {
                    interrupted = true;
                }
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
  13. 再次进入shouldParkAfterFailedAcquire(p,node),此时prep(p) = -1,返回true

    //  AQS 继承过来的方法, 方便阅读, 放在此处
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        // 获取上一个节点的状态
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL) { //Node.SIGNAL = -1
            // 上一个节点都在阻塞, 那么自己也阻塞好了
            return true;
        }
        // > 0 表示取消状态
        if (ws > 0) {
            // 上一个节点取消, 那么重构删除前面所有取消的节点, 返回到外层循环重试
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            // 这次还没有阻塞
            // 但下次如果重试不成功, 则需要阻塞,这时需要设置上一个节点状态为 Node.SIGNAL
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }
  14. 进入parkAndCheckInterrupt()方法,当前线程进入阻塞状态

    // 阻塞当前线程
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

  15. 多个线程竞争失败后,

  16. 此时,Thread-0执行完成,释放锁,调用ReentrantLock中的

    public void unlock() {
        sync.release(1);
    }
  17. 进入sync.release(1)方法,

    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            AbstractQueuedSynchronizer.Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

    在tryRelease(arg)方法中,设置 exclusiveOwnerThread 为 null,state = 0,返回true(返回false 的情况下面再说)

  18. 执行到

    AbstractQueuedSynchronizer.Node h = head;
    if (h != null && h.waitStatus != 0)
        unparkSuccessor(h);
  19. 此时h = head 不等于null,且h的状态!=0 (等于-1),进入unparkSuccessor(h)方法,唤醒后继节点,此时node (h) 的状态=-1,h的后继节(s)点 != null,执行                                               if (s != null)   LockSupport.unpark(s.thread); 唤醒s线程,s线程开始竞争锁

    private void unparkSuccessor(AbstractQueuedSynchronizer.Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);
    
        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        AbstractQueuedSynchronizer.Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (AbstractQueuedSynchronizer.Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }
  20. s(Thread-1)线程回到

    // 阻塞当前线程
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

    继续执行

  21. 返回到

    // AQS 继承过来的方法, 方便阅读, 放在此处
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (; ; ) {
                final Node p = node.predecessor();
                // 上一个节点是 head, 表示轮到自己(当前线程对应的 node)了, 尝试获取
                if (p == head && tryAcquire(arg)) {
                    // 获取成功, 设置自己(当前线程对应的 node)为 head
                    setHead(node);
                    // 上一个节点 help GC
                    p.next = null;
                    failed = false;
                    // 返回中断标记 false
                    return interrupted;
                }
                if (
                    // 判断是否应当 park, 进入 ㈦
                        shouldParkAfterFailedAcquire(p, node) &&
                                // park 等待, 此时 Node 的状态被置为 Node.SIGNAL ㈧
                                parkAndCheckInterrupt()
                ) {
                    interrupted = true;
                }
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    继续进行for循环,此时if (p == head && tryAcquire(arg)) ,在次尝试加锁,此时如果加锁成功,执行以下代码

    setHead(node);
    // 上一个节点 help GC
    p.next = null;
    failed = false;
    // 返回中断标记 false
    return interrupted;

    将关联s线程(刚才关联Thread-1线程的节点)的节点设置为头节点(删除之前的头节点,将此节点关联的线程改为null)

  22. 如果刚才thread-1线程唤醒后,新出现了一个线程与之竞争,且thread-1线程竞争失败,在次进入parkAndCheckInterrupt(),进入阻塞状态

2、可重入原理

ReentrantLock的非公平获取锁的源码

protected final boolean tryAcquire(int acquires) {
    return nonfairTryAcquire(acquires);
}
static final class NonfairSync extends Sync {
    // ...

    // Sync 继承过来的方法, 方便阅读, 放在此处
    final boolean nonfairTryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            if (compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        // 如果已经获得了锁, 线程还是当前线程, 表示发生了锁重入
        else if (current == getExclusiveOwnerThread()) {
            // state++
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }

    // Sync 继承过来的方法, 方便阅读, 放在此处
    protected final boolean tryRelease(int releases) {
        // state--
        int c = getState() - releases;
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        boolean free = false;
        // 支持锁重入, 只有 state 减为 0, 才释放成功
        if (c == 0) {
            free = true;
            setExclusiveOwnerThread(null);
        }
        setState(c);
        return free;
    }
}

  1. 当一个线程第一次获得锁时,进入代码
    if (c == 0) {
       if (compareAndSetState(0, acquires)) {
            setExclusiveOwnerThread(current);
            return true;
       }
    }

    把锁的state设置为1,把拥有锁的线程设置为当前线程,返回true

  2. 当一个线程多次获得锁时(锁重入),进入代码
    else if (current == getExclusiveOwnerThread()) {
        // state++
        int nextc = c + acquires;
        if (nextc < 0) // overflow
        throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
    }
    

    让state++,返回true

  3. 当锁重入后释放锁时,进入
        protected final boolean tryRelease(int releases) {
            // state--
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            // 支持锁重入, 只有 state 减为 0, 才释放成功
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

    让state--,如果state != 0 返回false,如果=0,设置当前拥有锁的线程为null,返回true

3、可打断原理

(1)、不可打断(默认)
在此模式下,即使它被打断,仍会驻留在 AQS 队列中,一直要等到获得锁后方能得知自己被打断了
// Sync 继承自 AQS
static final class NonfairSync extends Sync {
    // ...

    private final boolean parkAndCheckInterrupt() {
        // 如果打断标记已经是 true, 则 park 会失效
        LockSupport.park(this);
        // interrupted 会清除打断标记
        return Thread.interrupted();
    }

    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (; ; ) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null;
                    failed = false;
                    // 还是需要获得锁后, 才能返回打断状态
                    return interrupted;
                }
                if (
                        shouldParkAfterFailedAcquire(p, node) &&
                                parkAndCheckInterrupt()
                ) {
                    // 如果是因为 interrupt 被唤醒, 返回打断状态为 true
                    interrupted = true;
                }
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    public final void acquire(int arg) {
        if (
                !tryAcquire(arg) &&
                        acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
        ) {
            // 如果打断状态为 true
            selfInterrupt();
        }
    }

    static void selfInterrupt() {
        // 重新产生一次中断
        Thread.currentThread().interrupt();
    }
}
  1. 被打断后,进入方法,return true,但是Thread.interrupted()会重置打断标记为false
    // 阻塞当前线程
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }
  2. 回退到

    if (
        shouldParkAfterFailedAcquire(p, node) &&
        parkAndCheckInterrupt()
        ) {
        // 如果是因为 interrupt 被唤醒, 返回打断状态为 true
        interrupted = true;
    }

    置interrupted = true

  3. 接着循环,接着进入到

    // 阻塞当前线程
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

    进入阻塞状态,但再次被唤醒之后器其返回值仍然时true

  4. 直到该线程获得所之后,执行

    if (p == head && tryAcquire(arg)) {
        setHead(node);
        p.next = null;
        failed = false;
        // 还是需要获得锁后, 才能返回打断状态
        return interrupted;
    }

    返回true

  5. 回退到

        public final void acquire(int arg) {
            if (
                    !tryAcquire(arg) &&
                            acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
            ) {
                // 如果打断状态为 true
                selfInterrupt();
            }
        }
    
        static void selfInterrupt() {
            // 重新产生一次中断
            Thread.currentThread().interrupt();
        }

    acquireQueued(addWaiter(Node.EXCLUSIVE), arg)返回值时true,执行selfInterrupted(),打断当前进程

在不可打断模式下,只要任务在AQS队列中,就不能打断

(2)、可打断
// ㈠ 可打断的获取锁流程
private void doAcquireInterruptibly(int arg) throws InterruptedException {
    final Node node = addWaiter(Node.EXCLUSIVE);
    boolean failed = true;
    try {
        for (;;) {
            final Node p = node.predecessor();
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return;
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt()) {
                // 在 park 过程中如果被 interrupt 会进入此
                // 这时候抛出异常, 而不会再次进入 for (;;)
                throw new InterruptedException();
            }
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

打断后直接抛出异常

(二)、公平锁实现原理

static final class FairSync extends Sync {
    private static final long serialVersionUID = -3000897897090466540L;

    final void lock() {
        acquire(1);
    }

    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final void acquire(int arg) {
        if (
                !tryAcquire(arg) &&
                        acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
        ) {
            selfInterrupt();
        }
    }

    // 与非公平锁主要区别在于 tryAcquire 方法的实现
    protected final boolean tryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            // 先检查 AQS 队列中是否有前驱节点, 没有才去竞争
            if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        } else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0)
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }

    // ㈠ AQS 继承过来的方法, 方便阅读, 放在此处
    public final boolean hasQueuedPredecessors() {
        Node t = tail;
        Node h = head;
        Node s;
        // h != t 时表示队列中有 Node
        return h != t &&
                (
                        // (s = h.next) == null 表示队列中没有老二
                        (s = h.next) == null || // 或者队列中老二线程不是此线程
                                s.thread != Thread.currentThread()
                );
    }
}

在获取锁时,要限先执行方法hasQueuedPredecessors(),该方法当队列中

没有第二位(没有老二是因为这时候另一个线程在初始化这个队列,刚好head被创建出来了但是没有设置next)

或者

第二位节点不是当前节点时,返回true,取反为false,无法获取锁,返回false

(三)、条件变量实现原理

每个条件变量其实就对应着一个等待队列,其实现类是 ConditionObject

1、await流程

// 等待 - 直到被唤醒或打断
public final void await() throws InterruptedException {
    if (Thread.interrupted()) {
        throw new InterruptedException();
    }
    // 添加一个 Node 至等待队列, 见 ㈠
    Node node = addConditionWaiter();
    // 释放节点持有的锁
    int savedState = fullyRelease(node);
    int interruptMode = 0;
    // 如果该节点还没有转移至 AQS 队列, 阻塞
    while (!isOnSyncQueue(node)) {
        // park 阻塞
        LockSupport.park(this); // 如果被打断, 退出等待队列
        if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
            break;
    }
    // 退出等待队列后, 还需要获得 AQS 队列的锁
    if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
        interruptMode = REINTERRUPT;
    // 所有已取消的 Node 从队列链表删除, 见 ㈡
    if (node.nextWaiter != null)
        unlinkCancelledWaiters();
    // 应用打断模式, 见 ㈤
    if (interruptMode != 0)
        reportInterruptAfterWait(interruptMode);
}
  1. 先进入addConditionWaiter()方法,创建一个顶的node节点,将其挂到ConditionObject中,将其状态置为-2,返回这个节点
    // 添加一个 Node 至等待队列
    private Node addConditionWaiter() {
        Node t = lastWaiter;
        // 所有已取消的 Node 从队列链表删除, 见 ㈡
        if (t != null && t.waitStatus != Node.CONDITION) {
            unlinkCancelledWaiters();
            t = lastWaiter;
        }
        // 创建一个关联当前线程的新 Node, 添加至队列尾部
        Node node = new Node(Thread.currentThread(), Node.CONDITION);
        if (t == null)
            firstWaiter = node;
        else
            t.nextWaiter = node;
        lastWaiter = node;
        return node;
    }
  2. 执行int savedState = fullyRelease(node),
    final int fullyRelease(AbstractQueuedSynchronizer.Node node) {
        boolean failed = true;
        try {
            int savedState = getState();
            if (release(savedState)) {
                failed = false;
                return savedState;
            } else {
                throw new IllegalMonitorStateException();
            }
        } finally {
            if (failed)
                node.waitStatus = AbstractQueuedSynchronizer.Node.CANCELLED;
        }
    }

    进入release(savedState)

    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            AbstractQueuedSynchronizer.Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

    进入tryRelease(arg)中,将state置为0,将拥有锁的线程设置为null

    protected final boolean tryRelease(int releases) {
        int c = getState() - releases;
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        boolean free = false;
        if (c == 0) {
            free = true;
            setExclusiveOwnerThread(null);
        }
        setState(c);
        return free;
    }

    返回

    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            AbstractQueuedSynchronizer.Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

    唤醒head的后继节点

  3. 返回到await,进入while循环,阻塞当前线程
    // 等待 - 直到被唤醒或打断
    public final void await() throws InterruptedException {
        if (Thread.interrupted()) {
            throw new InterruptedException();
        }
        // 添加一个 Node 至等待队列, 见 ㈠
        Node node = addConditionWaiter();
        // 释放节点持有的锁
        int savedState = fullyRelease(node);
        int interruptMode = 0;
        // 如果该节点还没有转移至 AQS 队列, 阻塞
        while (!isOnSyncQueue(node)) {
            // park 阻塞
            LockSupport.park(this); // 如果被打断, 退出等待队列
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
        }
        // 退出等待队列后, 还需要获得 AQS 队列的锁
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
            interruptMode = REINTERRUPT;
        // 所有已取消的 Node 从队列链表删除, 见 ㈡
        if (node.nextWaiter != null)
            unlinkCancelledWaiters();
        // 应用打断模式, 见 ㈤
        if (interruptMode != 0)
            reportInterruptAfterWait(interruptMode);
    }

2、signal流程

让Thread-1线程唤醒Thread-0线程

public final void signal() {
    if (!isHeldExclusively())  //判断当前线程是否是拥有锁的线程
        throw new IllegalMonitorStateException();
    AbstractQueuedSynchronizer.Node first = firstWaiter; //获取队首的节点
    if (first != null)
        doSignal(first);
}
  1. 执行doSignal(first)方法
    private void doSignal(AbstractQueuedSynchronizer.Node first) {
        do {
            if ( (firstWaiter = first.nextWaiter) == null)
                lastWaiter = null;
            first.nextWaiter = null;
        } while (!transferForSignal(first) &&
                (first = firstWaiter) != null);
    }

    将当前的节点从ConditionObject的队列中断开执行transferForSignal(first)方法

    final boolean transferForSignal(AbstractQueuedSynchronizer.Node node) {
        if (!compareAndSetWaitStatus(node, AbstractQueuedSynchronizer.Node.CONDITION, 0))
            return false;
        
        AbstractQueuedSynchronizer.Node p = enq(node);
        int ws = p.waitStatus;
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, AbstractQueuedSynchronizer.Node.SIGNAL))
            LockSupport.unpark(node.thread);
        return true;
    }

    先将当前节点的状态设置为0,进入enq(node)方法,将node挂在到阻塞队列末尾,返回node的前驱节点(Thread-3)记为p,将p的状态设置为-1,然后返回true

十六、读写锁原理

ReentrantReadWriteLock

StampedLock

十七、Semaphore 原理

(一)、acquire

  1. Semaphore 的构造方法(假设设置信号量为3)
    public Semaphore(int permits) {
        sync = new NonfairSync(permits);
    }
    NonfairSync(int permits) {
         super(permits);
    }
    Sync(int permits) {
         setState(permits);
    }

    将state设置为3

  2. 线程获得锁要调用acquire()方法
    public void acquire() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }
    public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

    进入tryAcquireShared(arg)

    protected int tryAcquireShared(int acquires) {
       return nonfairTryAcquireShared(acquires);
    }
    final int nonfairTryAcquireShared(int acquires) {
        for (;;) {
            int available = getState();   //获得state = 3
            int remaining = available - acquires;  //state-1
            if (remaining < 0 ||
                    compareAndSetState(available, remaining))
                return remaining;  //return 2
        }
    }

    返回到

    public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)  //返回值为2,加锁成功,结束
            doAcquireSharedInterruptibly(arg);
    }
  3. 假设Thread-1Thread-2Thread-4 cas 竞争成功,此时Thread-0竞争锁时
    if (remaining < 0 ||
                    compareAndSetState(available, remaining))
                return remaining;  //return -1
        }

    返回

    public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)  //返回值为-1,加锁失败
            doAcquireSharedInterruptibly(arg);
    }

    执行doAcquireSharedInterruptibly(arg); 与ReentrantLock 相似

    private void doAcquireSharedInterruptibly(int arg)
            throws InterruptedException {
        final AbstractQueuedSynchronizer.Node node = addWaiter(AbstractQueuedSynchronizer.Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final AbstractQueuedSynchronizer.Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    thread-3也重复上述过程,最终阻塞

(二)、release

  1. Thread-4释放一个许可
    public void release() {
       sync.releaseShared(1);
    }
    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

    进入

    protected final boolean tryReleaseShared(int releases) {
        for (;;) {
            int current = getState();  //拿到当前锁状态
            int next = current + releases;  //suo状态加1
            if (next < current) // overflow
                throw new Error("Maximum permit count exceeded");
            if (compareAndSetState(current, next))  //尝试改变锁状态
                return true;  //返回true
        }
    }

    返回

    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

    执行doReleaseShared();

    private void doReleaseShared() {
        
        for (;;) {
            AbstractQueuedSynchronizer.Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == AbstractQueuedSynchronizer.Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, AbstractQueuedSynchronizer.Node.SIGNAL, 0))
                        continue;            // loop to recheck cases
                    unparkSuccessor(h); //唤醒线程
                }
                else if (ws == 0 &&
                        !compareAndSetWaitStatus(h, 0, AbstractQueuedSynchronizer.Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            if (h == head)                   // loop if head changed
                break;
        }
    }
  2. 接下来竞争锁的过程同上

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/501316.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

游戏领域AI智能视频剪辑解决方案

游戏行业作为文化创意产业的重要组成部分&#xff0c;其发展和创新速度令人瞩目。然而&#xff0c;随着游戏内容的日益丰富和直播文化的兴起&#xff0c;传统的视频剪辑方式已难以满足玩家和观众日益增长的需求。美摄科技&#xff0c;凭借其在AI智能视频剪辑领域的深厚积累和创…

ISP-VPN实验

文章目录 ISP-VPN实验一&#xff0c;实验拓扑二、实验要求三、IP规划四、实验配置1、IP配置R1的配置R2的配置R3的配置R4的配置R5的配置 2、配置缺省路由3、认证与被认证配置4、HDLC封装5、构建MGRE和GRE6、整个私有网络基于RIP全网可达7、查看路由配置和PC端配置8、PC端pingR5的…

【爬虫开发】爬虫从0到1全知识md笔记第2篇:requests模块,知识点:【附代码文档】

爬虫开发从0到1全知识教程完整教程&#xff08;附代码资料&#xff09;主要内容讲述&#xff1a;爬虫课程概要&#xff0c;爬虫基础爬虫概述,,http协议复习。requests模块&#xff0c;requests模块1. requests模块介绍,2. response响应对象,3. requests模块发送请求,4. request…

[Python GUI PyQt] PyQt5快速入门

PyQt5快速入门 PyQt5的快速入门0. 写在前面1. 思维导图2. 第一个PyQt5的应用程序3. PyQt5的常用基本控件和布局3.1 PyQt5的常用基本控件3.1.1 按钮控件 QPushButton3.1.2 文本标签控件 QLabel3.1.3 单行输入框控件 QLineEdit3.1.4 A Quick Widgets Demo 3.2 PyQt5的常用基本控件…

C++多线程:创建多个线程与数据共享安全问题(四)

1、创建多个线程 多线程的调度由操作系统负责&#xff0c;线程执行的先后没有严格的顺序完全看操作系统和CPU的心情。 #include <iostream> #include <vector> #include <thread>void thread_print(int num) {std::cout << "线程编号 " &…

小程序UI设计规范,界面设计尺寸详解

作为互联网技术的重要组成部分&#xff0c;小程序在日常生活中发挥着越来越重要的作用。因此&#xff0c;了解和严格遵守小程序的 UI 设计标准非常重要&#xff0c;它不仅可以帮助我们在保证良好用户体验的同时优化小程序&#xff0c;还可以使我们的产品在竞争激烈的市场中占据…

Python 自学(九) 之异常处理,文件及目录操作

目录 1. try ... except ... else ... finally 排列 P231 2. write, read, seek, readline, readlines 基本文件操作 P245 3. os模块 基本目录操作 P249 4. os.path 模块 复杂目录操作 P250 5. os 模块 高…

什么是齐纳二极管?齐纳二极管1SMB5944BT3G参数详解+应用方案

关于齐纳二极管基本知识&#xff1a; 齐纳二极管&#xff0c;又称稳压二极管。利用PN结的反向击穿状态&#xff0c;电流变化范围大&#xff0c;电压基本不变。制作了具有稳压功能的二极管。这种二极管是一个高电阻半导体器件&#xff0c;直到临界反向击穿电压。在这个临界击穿…

numpy之linspace()函数使用详解

numpy之linspace()函数使用详解 linspace() 函数 作为序列生成器&#xff0c; numpy.linspace()函数用于在线性空间中以均匀步长生成数字序列。 Numpy通常可以使用numpy.arange()生成序列&#xff0c;但是当我们使用浮点参数时&#xff0c;可能会导致精度损失&#xff0c;这…

Linux(CentOS7)安装 MongoDB

目录 下载 上传 解压 创建mongodb.conf 创建数据文件夹和日志文件夹 启动服务 创建软链接 安装客户端 下载 上传 安装 下载 官方地址&#xff1a; Download MongoDB Community Server | MongoDBhttps://www.mongodb.com/try/download/community 上传 将下载好的 …

Pulsar 社区周报 | No.2024-03-29 Pulsar 全面拥抱 OpenTelemetry 标准

“ 各位热爱 Pulsar 的小伙伴们&#xff0c;Pulsar 社区周报更新啦&#xff01;这里将记录 Pulsar 社区每周的重要更新&#xff0c;周五发布。 ” Pulsar 逐步拥抱 OpenTelemetry 标准 OpenTelemetry 正在迅速成为指标度量的事实标准 API&#xff0c;这将有利于提升指标采集的扩…

羊大师解密长期喝羊奶的十大好处

在忙碌而又充满挑战的现代生活中&#xff0c;维持一个健康的生活方式变得越来越重要。羊奶&#xff0c;作为自古以来就被人类广泛消费的一种天然饮品&#xff0c;不仅味道醇厚&#xff0c;而且营养价值丰富。让我们一起探索长期饮用羊奶所带来的十大好处。 丰富的营养成分 羊奶…

Kaggle注册验证码问题(Captcha must be filled out.)

Kaggle注册验证码问题 Captcha must be filled out.使用Edge浏览器 Header Editor 插件安装 下载插件Header Editor 导入重定向脚本 点击扩展插件&#xff0c; 打开Header Editor插件&#xff0c;进行管理 点击导入输入下载链接进行下载或者导入本地json文件(二者任选其一…

你知道吗?NHANES数据也能做孟德尔随机化来验证因果,还发了二区(IF=7.4)

编者 近日&#xff0c;福建医科大学研究团队仅用孟德尔随机化&#xff0c;结合NHANES和GWAS数据库发文二区&#xff0c;验证他汀类药物是糖尿病视网膜病变的危险因素&#xff0c;与各位做个分享&#xff01; 相信大家都知道&#xff0c;高血糖会导致糖尿病&#xff08;DM&#…

安全团队需要重点演练的四大威胁

文章目录 前言一、勒索软件攻击二、第三方风险三、内部威胁四、分布式拒绝服务攻击(DDoS)前言 桌面演练(推演)是一种重要的安全演习形式,参演人员利用演练方案、流程图、计算机模拟、视频会议等辅助手段,针对事先假定的演练情景,讨论和推演应急决策及现场处置,从而促使相…

“51媒体”线下活动,媒体线上同步直播的好处,有哪些资源?

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 线下活动媒体线上同步直播的好处以及可利用的资源如下&#xff1a; 好处&#xff1a; 扩大影响力&#xff1a;通过媒体线上同步直播&#xff0c;活动可以覆盖更广泛的受众群体&#xff…

37-巩固练习(一)

37-1 if语句等 1、问&#xff1a;输出结果 int main() {int i 0;for (i 0; i < 10; i){if (i 5){printf("%d\n", i);}return 0;} } 答&#xff1a;一直输出5&#xff0c;死循环 解析&#xff1a;i5是赋值语句&#xff0c;不是判断语句&#xff0c;每一次循…

零基础教程:R语言lavaan结构方程模型(SEM)

查看原文>>>最新基于R语言lavaan结构方程模型&#xff08;SEM&#xff09;实践技术应用 基于R语言lavaan程序包&#xff0c;通过理论讲解和实际操作相结合的方式&#xff0c;由浅入深地系统介绍结构方程模型的建立、拟合、评估、筛选和结果展示的全过程。我们筛选大量…

鸿蒙原生应用开发-网络管理HTTP数据请求

一、场景介绍 应用通过HTTP发起一个数据请求&#xff0c;支持常见的GET、POST、OPTIONS、HEAD、PUT、DELETE、TRACE、CONNECT方法。 二、接口说明 HTTP数据请求功能主要由http模块提供。 使用该功能需要申请ohos.permission.INTERNET权限。 涉及的接口如下表&#xff0c;具体的…

分享一个免费的chat工具

用这个神奇的聊天工具&#xff0c;我的生活变得更加便利了。不需要魔法&#xff0c;不需要海外手机号码&#xff0c;来试试吧:Chat8。点击使用: https://guan.chat772.com/#/register?bronk_on1579566