深度学习和神经网络

人工神经网络分为两个阶段:
1 :接收来自其他n个神经元传递过来的信号,这些输入信号通过与相应的权重进行
加权求和传递给下个阶段。(预激活阶段)
2:把预激活的加权结果传递给激活函数
sum :加权
f:激活函数
神经元
        神经元是组成神经网络的最基本单位,它起初来源于人体,模仿人体的神经元,功能也与人体的神经元一致,得到信号的输入,经过数据处理,然后给出一个结果作为输出或者作为下一个神经元的输入

 

输入:是特征向量。特征向量代表的是变化的方向。或者说,是最能代表这个事物的特征的方
向。
权重(权值):就是特征值。有正有负,加强或抑制,同特征值一样。权重的绝对值大小,代
表了输入信号对神经元的影响的大小。
-----------------------------------------------------------------------------------------------------------------------------
最简单的把这两组特征向量分开的方法?

ax_+by+c=0 ->y = kx+b ->y=wx+b
把上式推广到n维空间:
h = a1x1+a2x2+...+anxn+a0 = 0
神经元就是当h大于0时输出1,h小于0时输出0这么一个模型,它的实质就是把特征空间一切两半,认为两 半分别属于两个类。
-----------------------------------------------------------------------------------------------------------------------------
神经元的缺点:只能一刀切

 

解决方法->多层神经网络
-----------------------------------------------------------------------------------------------------------------------------
神经网络
神经网络是一种运算模型,由大量的节点(神经元)和之间相互的联接构成。
每两个节点间的联接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。
网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
单层神经网络(感知器)
-----------------------------------------------------------------------------------------------------------------------------
多层神经网络
神经网络是由多个神经元组合而成,前一个神经元的结果作为后一个神经元的输入,依次组合而成,神经网络一般分为三层,第一层作为输入层,最后一层作为输出层,中间的全部是隐含层。
理论证明,任何多层网络可以用三层网络近似地表示。
一般凭经验来确定隐藏层到底应该有多少个节点,在测试的过程中也可以不断调整节点数以取得最佳效果。

 

-----------------------------------------------------------------------------------------------------------------------------
前馈神经网络
人工神经网络模型主要考虑网络链接的拓扑结构、神经元特征、学习规则等。
其中,前馈神经网络也称为 多层感知机

 

-----------------------------------------------------------------------------------------------------------------------------
激活函数
激活函数是神经网络设计的一个核心单元。
在神经网络中,把处于在活跃状态的神经元称为激活态,处于非活跃状态的神经元称为抑制态。激活函数赋予了神经元自我学习和适应的能力。
激活函数的作用是为了在神经网络中引入非线性的学习和处理能力。
常用的激活函数(满足 1 非线性 2 可微性 3 单调性)
1 sigmoid函数        

2 tanh函数                

 

3 ReLU函数                 f(x) = max (0, x)

 

-----------------------------------------------------------------------------------------------------------------------------
sigmoid主要有两个缺点:
1. 梯度饱和,看图可知,两边数值的梯度都为0;
2. 结果的平均值不为0,这是我们不希望的,因为这会导致后层的神经元的输入是非 0均值的信号,这会对梯度产生影响

-----------------------------------------------------------------------------------------------------------------------------

激活函数 -tanh
配图错了,见后图

-----------------------------------------------------------------------------------------------------------------------------
激活函数 - 线性整流层 RELU

 

 

ReLU函数其实是分段线性函数,把所有的负值都变为0,而正值不变,这种操作
被称为 单侧抑制
正因为有了这单侧抑制,才使得神经网络中的神经元也具有了稀疏激活性。
模型增加N层之后,理论上ReLU神经元的激活率将降低2的N次方倍
-----------------------------------------------------------------------------------------------------------------------------

 

-----------------------------------------------------------------------------------------------------------------------------
任何算法得以运行,都必须依靠特定的数据结构,而用于将各种数据统一封装并输入网络模型的数据结构叫tensor,也就是张量。张量在不同的情况下存有不同的形式。
张量一大特征是维度,一个0维张量就是一个常量。在Python中,一个张量的维度可以通过读取它的ndim属性来获取。(我们常用的数组就等价与一维张量,一个二维数组就是一个二维张量)
所谓n维张量,其实就是一维数组,数组中的每个元素都是n-1维张量。由此可见,3维张量其实就是一个一维数组,数组中的每个元素就是2维数组。

 

-----------------------------------------------------------------------------------------------------------------------------
设计神经网络
1、使用神经网络训练数据之前,必须确定神经网络的层数,以及每层单元的个数
2、特征向量在被传入输入层时通常要先标准化到0-1之间(为了加速学习过程)
3、离散型变量可以被编码成每一个输入单元对应一个特征值可能赋的值
比如:特征值A可能取三个值(a0, a1, a2), 可以使用3个输入单元来代表A。
如果A=a0, 那么代表a0的单元值就取1, 其他取0;1,0,0
如果A=a1, 那么代表a1的单元值就取1,其他取0,以此类推 0,1,0
4、神经网络既可以用来做分类(classification)问题,也可以解决回归(regression)问题
(1)对于分类问题,如果是2类,可以用一个输出单元表示(0和1分别代表2类);如果多于2类,则每
一个类别用一个输出单元表示 1 0 0 01 0
(2)没有明确的规则来设计最好有多少个隐藏层,可以根据实验测试和误差以及精准度来实验并改进。
-----------------------------------------------------------------------------------------------------------------------------
深度神经网络 & 深度学习
传统的神经网络发展到了多隐藏层的情况,
具有多个隐藏层的神经网络被称为深度神经网络,基于深度神经网络的机器学习研究称
之为深度学习。
如果需要细化和区分区别,那么,深度神经网络可以理解为对传统多层网络进行了结构、
方法等方面的优化。

 

-----------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/50115.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

零售企业信息化系统建设与应用解决方案

导读:原文《零售企业信息化系统建设与应用解决方案ppt》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。 完整版领取方式 如需获取完整的电子版内容参考学习…

几个影响 cpu cache 性能因素及 cache 测试工具介绍

》内核新视界文章汇总《 文章目录 1 cache 性能及影响因素1.1 内存访问和性能比较1.2 cache line 对性能的影响1.3 L1 和 L2 缓存大小1.4 指令集并行性对 cache 性能的影响1.5 缓存关联性对 cache 的影响1.6 错误的 cacheline 共享 (缓存一致性)1.7 硬件设计 2 cpu cache benc…

抖音seo矩阵系统源码保姆式开发部署指导

抖音seo霸屏,是一种专为抖音视频创作者和传播者打造的视频批量剪辑,批量分发产品。使用抖音seo霸屏软件,可以帮助用户快速高效的制作出高质量的优质视频。 使用方法:1. 了解用户的行为习惯 2. 充分利用自身资源进行开发 3. 不…

下级平台级联安防视频汇聚融合EasyCVR平台,层级显示不正确是什么原因?

视频汇聚平台安防监控EasyCVR可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有GB28181、RTSP/Onvif、RTMP等,以及厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等,能对外分发RTSP、RTMP、FLV、HLS、WebRTC等…

国标GB28181视频监控平台EasyGBS视频无法播放,抓包返回ICMP是什么原因?

国标GB28181视频平台EasyGBS是基于国标GB/T28181协议的行业内安防视频流媒体能力平台,可实现的视频功能包括:实时监控直播、录像、检索与回看、语音对讲、云存储、告警、平台级联等功能。国标GB28181视频监控平台部署简单、可拓展性强,支持将…

【高危】Spring Security鉴权规则错误配置风险

漏洞描述 Spring Security 是一套为基于Spring的应用程序提供说明性安全保护的安全框架。 在 Spring Security 受影响的版本中,由于 Spring Security 的授权规则会应用于整个应用程序上下文,当应用程序中包含多个servlet,并且其中一个为Dis…

2023-将jar包上传至阿里云maven私有仓库(云效制品仓库)

一、背景介绍 如果要将平时积累的代码工具jar包,上传至云端,方便团队大家一起使用,一般的方式就是上传到Maven中心仓库(但是这种方式步骤多,麻烦,而且上传之后审核时间比较长,还不太容易通过&a…

rocketmq客户端本地日志文件过大调整配置(导致pod缓存cache过高)

现象 在使用rocketmq时,发现本地项目中文件越来越大,查找发现在/home/root/logs/rocketmqlog目录下存在大量rocketmq_client.log日志文件。 配置调整 开启slf4j日志模式,在项目启动项中增加-Drocketmq.client.logUseSlf4jtrue因为配置使用的…

适用于 Windows 10/11 的 10 款最佳免费 PDF 阅读器软件

PDF 文档非常受欢迎,因为它们可以在任何操作系统上打开,并且很容易附加到电子邮件、消息或网站中。PDF 文档还具有不易更改的优点。因此,它被个人和组织广泛用于简历、学习材料、文档以及外围设备和设备手册的数字副本。 PDF 阅读器软件可帮…

简单认识NoSQL的Redis配置与优化

文章目录 一、关系型数据库与非关系型数据库1、关系型数据库:2、非关系型数据库3、关系型数据库和非关系型数据库区别:4、非关系型数据库应用场景 二.Redis1、简介2、优点:3、Redis为什么这么快? 三、Redis 安装部署1、安装配置2、…

【深度学习Week3】ResNet+ResNeXt

ResNetResNeXt 一、ResNetⅠ.视频学习Ⅱ.论文阅读 二、ResNeXtⅠ.视频学习Ⅱ.论文阅读 三、猫狗大战Lenet网络Resnet网络 四、思考题 一、ResNet Ⅰ.视频学习 ResNet在2015年由微软实验室提出,该网络的亮点: 1.超深的网络结构(突破1000层&…

一、window安装vagrant

篇章一、window安装vagrant 前言 在日常的学习中,需要在Window中学习Linux相关的操作命令,在本地熟悉Linux服务器环境,因此需要在电脑中安装Vagrant虚拟机来管理所需安装的Linux系统(也就是后续的Centos-7)。 1、下…

图形编辑器开发:是否要像 Figma 一样上 wasm

大家好,我是前端西瓜哥。 wasm 拿来做 Web 端的图形编辑器貌似是不错的选择。 因为图形处理会有相当多无法利用到 WebGL GPU 加速的 CPU 密集的计算。比如对一条复杂贝塞尔曲线进行三角化,对多个图形进行复杂图形的布尔运算。 图形编辑器性能天花板 F…

tinkerCAD案例:20. Simple Button 简单按钮和骰子

文章目录 tinkerCAD案例:20. Simple Button 简单按钮Make a Trick Die tinkerCAD案例:20. Simple Button 简单按钮 Project Overview: 项目概况: This is a series of fun beginner level lessons to hone your awesome Tinkercad skills a…

安全学习DAY10_HTTP数据包

文章目录 HTTP数据包![请添加图片描述](https://img-blog.csdnimg.cn/32eb72ceb2d6453b94487edb1a940a43.png)Request请求数据包结构Request请求方法(方式)请求头(Header)Response响应数据包结构Response响应数据包状态码状态码作…

黑客学习手册(自学网络安全)

一、首先,什么是黑客? 黑客泛指IT技术主攻渗透窃取攻击技术的电脑高手,现阶段黑客所需要掌握的远远不止这些。 二、为什么要学习黑客技术? 其实,网络信息空间安全已经成为海陆空之外的第四大战场,除了国…

Java特殊时间格式转化

平常开发过程当中,我们可能会见到有的日期格式是这样的。 1、2022-12-21T12:20:1608:00 2、2022-12-21T12:20:16.0000800 3、2022-12-21T12:20:16.00008:00下面来说一下这种时间格式怎么转换 第一种:2022-12-21T12:20:1608:00 代码如下: p…

二、前端高德地图、渲染标记(Marker)引入自定义icon,手动设置zoom

要实现这个效果,我们先看一下目前的页面展示: 左边有一个图例,我们可以方法缩小地图,右边是动态的marker标记,到时候肯定时候是后端将对应的颜色标识、文字展示、坐标点给咱们返回、我们肯定可以拿到一个list&#xf…

MTK联发科安卓核心板MT8385(Genio 500)规格参数资料_性能介绍

简介 MT8385安卓核心板 是一个高度集成且功能强大的物联网平台,具有以下主要特性: l 四核 Arm Cortex-A73 处理器 l 四核Arm Cortex-A53处理器 l Arm Mali™-G72 MP3 3D 图形加速器 (GPU),带有 Vulkan 1.0、OpenGL ES 3.2 和 OpenCL™ 2.x …

【如何训练一个中英翻译模型】LSTM机器翻译模型部署(三)

系列文章 【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码(一) 【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二) 【如何训练一个中英翻译模型】LSTM机器翻译模型部署(三) 【如何训…