图论- 最小生成树

一、最小生成树-prim算法 

1.1 最小生成树概念

一幅图可以有很多不同的生成树,比如下面这幅图,红色的边就组成了两棵不同的生成树:

对于加权图,每条边都有权重(用最小生成树算法的现实场景中,图的边权重一般代表成本、距离这样的标量),所以每棵生成树都有一个权重和。比如上图,右侧生成树的权重和显然比左侧生成树的权重和要小。

那么最小生成树很好理解了,所有可能的生成树(包含所有顶点)中,权重和最小的那棵生成树就叫「最小生成树」

1.2 稠密图-朴素prim

和djikstra很像

const int INF = 0x3f3f3f3f; // 定义一个非常大的数,用作无穷远的初始化值
int n; // n表示图中的顶点数
int g[N][N]; // 邻接矩阵,用于存储图中所有边的权重
int dist[N]; // 用于存储其他顶点到当前最小生成树的最小距离
bool st[N]; // 用于标记每个顶点是否已经被加入到最小生成树中

// Prim算法的实现,返回最小生成树的总权重
int prim() {
    memset(dist, 0x3f, sizeof dist); // 初始化所有顶点到MST的距离为无穷远

    int res = 0; // 存储最小生成树的总权重
    for (int i = 0; i < n; i++) { // 主循环,每次添加一个顶点到MST
        int t = -1; // 用于找到当前未加入MST且dist最小的顶点
        for (int j = 1; j <= n; j++) // 遍历所有顶点,找到t
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
        //t就是当前加入最小生成树的顶点
        if (i && dist[t] == INF) return INF; // 如果图不连通,则返回INF

        if (i) res += dist[t]; // 非首次迭代时,累加到MST的距离
        st[t] = true; // 将顶点t加入到MST中
        //再从T出发,更新所有未加入顶点到T的距离,用于下一轮新的T的更新
        for (int j = 1; j <= n; j++) // 更新其他所有顶点到MST的最小距离
            if (!st[j]) dist[j] = min(dist[j], g[t][j]);
    }

    return res; // 返回最小生成树的总权重
}

例题: 

#include<cstring>
#include<iostream>
#include<algorithm>

using namespace std;

const int N = 510,M = 100010,INF = 0x3f3f3f3f;

int n,m;
int g[N][N];
int dist[N];
bool used[N];

int prim(){
    memset(dist,0x3f,sizeof dist);
    int res = 0;
    for(int i = 0;i < n;i++){
        int t = -1;
        for(int j = 1;j <= n; j++){
            if((!used[j]) && (t == -1 || dist[t] > dist[j]))
            t = j;
        }
        used[t] = true;
        //第一步的dist[t]为INF
        if(i && dist[t] == INF) return INF;
        
        if(i)res += dist[t];
        
        for(int j = 1;j <= n;j++){
            if(!used[j])
            dist[j] = min(dist[j],g[t][j]);
        }
    }
    return res;
}

int main(){
    scanf("%d%d",&n,&m);
    //重要
    memset(g,0x3f,sizeof(g));
    for(int i = 0;i < m; i++){
        int u,v,w;
        scanf("%d%d%d",&u,&v,&w);
        g[u][v] = g[v][u] = min(g[u][v],w);
    }
    
    int r = prim();
    if(r == INF)puts("impossible");
    else printf("%d",r);
    return 0;
}

1.3 堆优化的prim-不常用,且复杂,一般用kruskal替代

省略 

二、最小生成树-kruskal算法

1.并查集复习

1.1 并查集(Union-Find)算法

是一个专门针对「动态连通性」的算法,我之前写过两次,因为这个算法的考察频率高,而且它也是最小生成树算法的前置知识

动态连通性

简单说,动态连通性其实可以抽象成给一幅图连线。比如下面这幅图,总共有 10 个节点,他们互不相连,分别用 0~9 标记:

这里所说的「连通」是一种等价关系,也就是说具有如下三个性质:

1、自反性:节点 p 和 p 是连通的。

2、对称性:如果节点 p 和 q 连通,那么 q 和 p 也连通。

3、传递性:如果节点 p 和 q 连通,q 和 r 连通,那么 p 和 r 也连通。

 现在我们的 Union-Find 算法主要需要实现这三个 API:

class UF {
public:
    /* 将 p 和 q 连接 */
    void union(int p, int q);
    /* 判断 p 和 q 是否连通 */
    bool connected(int p, int q);
    /* 返回图中有多少个连通分量 */
    int count();
};

函数功能说明:

比如说之前那幅图,0~9 任意两个不同的点都不连通,调用 connected 都会返回 false,连通分量为 10 个。

如果现在调用 union(0, 1),那么 0 和 1 被连通,连通分量降为 9 个。

再调用 union(1, 2),这时 0,1,2 都被连通,调用 connected(0, 2) 也会返回 true,连通分量变为 8 个。

 初始化:

怎么用森林来表示连通性呢?我们设定树的每个节点有一个指针指向其父节点,如果是根节点的话,这个指针指向自己。比如说刚才那幅 10 个节点的图,一开始的时候没有相互连通,就是这样:

代码如下:

class UF {
    // 记录连通分量
    private:
        int count;
        // 节点 x 的父节点是 parent[x]
        int* parent;

    public:
        /* 构造函数,n 为图的节点总数 */
        UF(int n) {
            // 一开始互不连通
            this->count = n;
            // 父节点指针初始指向自己
            parent = new int[n];
            for (int i = 0; i < n; i++)
                parent[i] = i;
        }

        /* 其他函数 */
};

 union实现:

操作如下:

代码如下:

class UF {
    // 为了节约篇幅,省略上文给出的代码部分...

public:
    void union(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        if (rootP == rootQ)
            return;
        // 将两棵树合并为一棵
        parent[rootP] = rootQ;
        // parent[rootQ] = rootP 也一样
        count--; // 两个分量合二为一
    }

    /* 返回某个节点 x 的根节点 */
    int find(int x) {
        // 根节点的 parent[x] == x
        while (parent[x] != x)
            x = parent[x];
        return x;
    }

    /* 返回当前的连通分量个数 */
    int count() {
        return count;
    }
};

 connected实现:

代码如下:

class UF {
private:
    // 省略上文给出的代码部分...
    
public:
    bool connected(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        return rootP == rootQ;
    }
};

 1.2 平衡性优化-union优化

分析union和connected的时间复杂度,我们发现,主要 API connected和 union 中的复杂度都是 find 函数造成的,所以说它们的复杂度和 find 一样。

find 主要功能就是从某个节点向上遍历到树根,其时间复杂度就是树的高度。我们可能习惯性地认为树的高度就是 logN,但这并不一定。logN 的高度只存在于平衡二叉树,对于一般的树可能出现极端不平衡的情况,使得「树」几乎退化成「链表」,树的高度最坏情况下可能变成 N

图论解决的都是诸如社交网络这样数据规模巨大的问题,对于 union 和 connected 的调用非常频繁,每次调用需要线性时间完全不可忍受。

关键在于 union 过程,我们一开始就是简单粗暴的把 p 所在的树接到 q 所在的树的根节点下面,那么这里就可能出现「头重脚轻」的不平衡状况,比如下面这种局面:

 长此以往,树可能生长得很不平衡。我们其实是希望,小一些的树接到大一些的树下面,这样就能避免头重脚轻,更平衡一些。解决方法是额外使用一个 size 数组,记录每棵树包含的节点数,我们不妨称为「重量」:

class UF {
private:
    int count;
    int* parent;
    // 新增一个数组记录树的“重量”
    int* size;

public:
    UF(int n) {
        this->count = n;
        parent = new int[n];
        // 最初每棵树只有一个节点
        // 重量应该初始化 1
        size = new int[n];
        for (int i = 0; i < n; i++) {
            parent[i] = i;
            size[i] = 1;
        }
    }
    /* 其他函数 */
};

比如说 size[3] = 5 表示,以节点 3 为根的那棵树,总共有 5 个节点。这样我们可以修改一下 union 方法:

class UF {
private:
    // 为了节约篇幅,省略上文给出的代码部分...
public:
    void union(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        if (rootP == rootQ)
            return;
        
        // 小树接到大树下面,较平衡
        if (size[rootP] > size[rootQ]) {
            parent[rootQ] = rootP;
            size[rootP] += size[rootQ];
        } else {
            parent[rootP] = rootQ;
            size[rootQ] += size[rootP];
        }
        count--;
    }
};

这样,通过比较树的重量,就可以保证树的生长相对平衡,树的高度大致在 logN 这个数量级,极大提升执行效率。

此时,find , union , connected 的时间复杂度都下降为 O(logN),即便数据规模上亿,所需时间也非常少。

1.3 路径压缩-find优化

其实我们并不在乎每棵树的结构长什么样,只在乎根节点

因为无论树长啥样,树上的每个节点的根节点都是相同的,所以能不能进一步压缩每棵树的高度,使树高始终保持为常数?

这样每个节点的父节点就是整棵树的根节点,find 就能以 O(1) 的时间找到某一节点的根节点,相应的,connected 和 union 复杂度都下降为 O(1)。

要做到这一点主要是修改 find 函数逻辑,非常简单,但你可能会看到两种不同的写法。

方法1:

class UF {
    // 为了节约篇幅,省略上文给出的代码部分...

private:
    int find(int x) {
        while (parent[x] != x) {
            // 这行代码进行路径压缩
            parent[x] = parent[parent[x]];
            x = parent[x];
        }
        return x;
    }
};

每次使得当前x指向父节点的父节点,这样会将一些节点向上移,然后缩短树的长度

压缩结束为: 

方法二:

class UF {
    // 为了节约篇幅,省略上文给出的代码部分...
    
    // 第二种路径压缩的 find 方法
    public:
        int find(int x) {
            if (parent[x] != x) {
                parent[x] = find(parent[x]);
            }
            return parent[x];
        }
};

 其迭代写法如下(便于理解):

int find(int x) {
    // 先找到根节点
    int root = x;
    while (parent[root] != root) {
        root = parent[root];
    }
    // 然后把 x 到根节点之间的所有节点直接接到根节点下面
    int old_parent = parent[x];
    while (x != root) {
        parent[x] = root;
        x = old_parent;
        old_parent = parent[old_parent];
    }
    return root;
}

最终效果: 

1.4 并查集框架-优化后 

class UF {
private:
    // 连通分量个数
    int count;
    // 存储每个节点的父节点
    int *parent;

public:
    // n 为图中节点的个数
    UF(int n) {
        this->count = n;
        parent = new int[n];
        for (int i = 0; i < n; i++) {
            parent[i] = i;
        }
    }
    
    // 将节点 p 和节点 q 连通
    void union_(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        
        if (rootP == rootQ)
            return;
        
        parent[rootQ] = rootP;
        // 两个连通分量合并成一个连通分量
        count--;
    }

    // 判断节点 p 和节点 q 是否连通
    bool connected(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        return rootP == rootQ;
    }

    int find(int x) {
        if (parent[x] != x) {
            parent[x] = find(parent[x]);
        }
        return parent[x];
    }

    // 返回图中的连通分量个数
    int count_() {
        return count;
    }
};

2.kruskal

给你输入编号从 0 到 n - 1 的 n 个结点,和一个无向边列表 edges(每条边用节点二元组表示),请你判断输入的这些边组成的结构是否是一棵树。

如果输入:

n = 5
edges = [[0,1], [0,2], [0,3], [1,4]]

 这些边构成的是一棵树,算法应该返回 true:

 输入:

n = 5
edges = [[0,1],[1,2],[2,3],[1,3],[1,4]]

 形成的就不是树结构了,因为包含环:

我们思考为何会产生环?仔细体会下面两种添边的差别

 

总结一下规律就是:

对于添加的这条边,如果该边的两个节点本来就在同一连通分量里,那么添加这条边会产生环;反之,如果该边的两个节点不在同一连通分量里,则添加这条边不会产生环

那么只需要在union两节点之前先检测两节点是否已经connection,如果已连接所有添加后会生成环,则返回false。同时需要注意count==1,不然就是森林了。

代码如下:

class UF {
public:
    vector<int> parent;

    UF(int n) {
        for (int i = 0; i < n; i++) {
            parent.push_back(i);
        }
    }

    int find(int x) {
        while (x != parent[x]) {
            parent[x] = parent[parent[x]];
            x = parent[x];
        }
        return x;
    }

    void union_(int p, int q) {
        int root_p = find(p);
        int root_q = find(q);
        parent[root_p] = root_q;
    }

    bool connected(int p, int q) {
        int root_p = find(p);
        int root_q = find(q);
        return root_p == root_q;
    }

    int count() {
        int cnt = 0;
        for (int i = 0; i < parent.size(); i++) {
            if (parent[i] == i) {
                cnt++;
            }
        }
        return cnt;
    }
};

bool validTree(int n, vector<vector<int>>& edges) {
    UF uf(n);
    // 遍历所有边,将组成边的两个节点进行连接
    for (auto edge : edges) {
        int u = edge[0];
        int v = edge[1];
        // 若两个节点已经在同一连通分量中,会产生环
        if (uf.connected(u, v)) {
            return false;
        }
        // 这条边不会产生环,可以是树的一部分
        uf.union_(u, v);
    }
    // 要保证最后只形成了一棵树,即只有一个连通分量
    return uf.count() == 1;
}

3.连接所有点的最小费用-kruskal算法

 所谓最小生成树,就是图中若干边的集合(我们后文称这个集合为 mst,最小生成树的英文缩写),你要保证这些边:

1、包含图中的所有节点。

2、形成的结构是树结构(即不存在环)。

3、权重和最小。

有之前题目的铺垫,前两条其实可以很容易地利用 Union-Find 算法做到,关键在于第 3 点,如何保证得到的这棵生成树是权重和最小的。

这里就用到了贪心思路:

将所有边按照权重从小到大排序,从权重最小的边开始遍历,如果这条边和 mst 中的其它边不会形成环,则这条边是最小生成树的一部分,将它加入 mst 集合;否则,这条边不是最小生成树的一部分,不要把它加入 mst 集合

以此题为例:

 此题虽然是使用kruskal算法,但是并不是直接套用,还要有一些值得注意的事项

1:我们要将题目中的给出点,转换为点组合并且将权重添加进去

在题中只给出一个点的坐标,我们需要想方法转换为两个点的链接,所以需要将每个点(两个坐标组合)转换为一个符号标记,在链接数组把相连的两个符号放一起就行了,很明显,我们使用0-n-1来记录每一个点是最合适的,不仅方便遍历也一目了然

因此有如下代码:

        vector<vector<int>> edges;
        for(int i =0;i < points.size();i++){
            //此处不能写为int j = 0,这样会重复导致超时,根据求子集的思想,应该从j=i+1开始
            for(int j = i+1;j < points.size();j++){
                // if(i == j)continue;//因为j=i+1开始,所有不需要这句判断
                int w1 = abs(points[i][0]-points[j][0]);
                int w2 = abs(points[i][1]-points[j][1]);
                edges.push_back({i,j,w1+w2});
            }
        }

 2:我们要对得到的数组进行排序,而且是对权重维度排序,这就需要我们利用lambda来自定义sort的排序方式了

有代码如下:

        sort(edges.begin(),edges.end(),[](const vector<int>& a,const vector<int>& b){
            return a[2] < b[2];
        });

依照kruskal算法,可以写出如下完整代码:

class uf{
    private:
        int count;
        vector<int> parent;
    public:
        uf(int n){
            this->count = n;
            // parent = new int[n];
            parent.resize(n);
            for(int i=0;i < n;i++){
                parent[i] = i;
            }
        }
        int find(int x){
            if(parent[x]!=x)
                parent[x] = find(parent[x]);
            return  parent[x];
        }
        void Union(int p,int q){
            int rootp = find(p);
            int rootq = find(q);
            if(rootp == rootq)return;
            parent[rootp] = rootq;
            count--;
        }
        bool connection(int p,int q){
            int rootp = find(p);
            int rootq = find(q);
            return rootp == rootq;
        }
};


class Solution {
public:
    int minCostConnectPoints(vector<vector<int>>& points) {
        vector<vector<int>> edges;
        for(int i =0;i < points.size();i++){
            //此处不能写为int j = 0,这样会重复导致超时,根据求子集的思想,应该从j=i+1开始
            for(int j = i+1;j < points.size();j++){
                // if(i == j)continue;//因为j=i+1开始,所有不需要这句判断
                int w1 = abs(points[i][0]-points[j][0]);
                int w2 = abs(points[i][1]-points[j][1]);
                edges.push_back({i,j,w1+w2});
            }
        }
        sort(edges.begin(),edges.end(),[](const vector<int>& a,const vector<int>& b){
            return a[2] < b[2];
        });
        uf uf(points.size());
        int sum_w = 0;
        for(auto& s : edges){
            int q = s[0],p = s[1],w = s[2];
            if(uf.connection(p,q))continue;
            sum_w +=w;
            uf.Union(p,q);
        }
        return sum_w;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/500966.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【测试篇】测试眼里的 BUG

文章目录 如何描述一个bug如何定义 bug 的级别BUG 的生命周期跟开发起争执怎么办&#xff08;高频面试题&#xff09; 如何描述一个bug 一个合格的bug描述应该包含以下几个部分&#xff1a; 发现问题的版本问题出现的环境错误重现的步骤预期行为的描述错误行为的描述其他&…

Python-基础部署

机器没法直接读懂我们写的代码&#xff0c;需要解释解释器作为中间的翻译&#xff0c;把代码转换成字节码在执行 安装python解释器 Download Python | Python.org 安装代码编辑器 pycharm Thank you for downloading PyCharm! 创建一个项目&#xff0c;每个项目里的文件夹…

全套医院手术麻醉系统源码 人工智能麻醉系统源码 医疗管理系统源码

全套医院手术麻醉系统源码 人工智能麻醉系统源码 医疗管理系统源码 手术麻醉临床信息系统有着完善的临床业务功能&#xff0c;能够涵盖整个围术期的工作&#xff0c;能够采集、汇总、存储、处理、展现所有的临床诊疗资料。通过该系统的实施&#xff0c;能够规范麻醉科的工作流…

【Node.JS】koa

文章目录 概述koa和express对比koa下载安装使用1.创建koa项目文件目录2. 创建koa服务3. 添加路由 koa-router4. 数据库服务 mongodb5. 添加请求参数json处理 koa-bodyparser6. 用户接口举例7.引入koa一些常用插件8.用户登录验证 koa-jwt9.webpack生产打包 来源 概述 Koa 是一个…

宝塔面板 -- 打包前端项目并部署提升访问速度

文章目录 前言一、打包前端项目二、添加PHP项目三、部署打包文件四、开通防火墙五、运行网站总结 前言 在前面写到的文章使用宝塔面板部署前端项目中&#xff0c;并没有将前端项目打包而是直接部署&#xff0c;导致网站访问速度非常慢&#xff0c;加载甚至要十几秒。因此&…

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions(IA-YOLO)

1、总体概述 基于深度学习的目标检测在常规条件的数据集可以获得不错的结果&#xff0c;但是在环境、场景、天气、照度、雾霾等自然条件的综合干扰下&#xff0c;深度学习模型的适应程度变低&#xff0c;检测结果也随之下降&#xff0c;因此研究在复杂气象条件下的目标检测方法…

shell的工作原理

本文旨在讲解shell的工作原理&#xff0c;希望读完本文&#xff0c;能使读者对shell的工作原理有一定的认识&#xff0c;废话不多说&#xff0c;开唠&#xff01; 在讲解shell的工作原理之前&#xff0c;我要首先给大家讲一下什么是操作系统&#xff0c;以Linux操作系统为例&am…

第N6周:使用Word2vec实现文本分类

import torch import torch.nn as nn import torchvision from torchvision import transforms,datasets import os,PIL,pathlib,warnings #忽略警告信息 warnings.filterwarnings("ignore") # win10系统 device torch.device("cuda"if torch.cuda.is_ava…

[flink 实时流基础]源算子和转换算子

文章目录 1. 源算子 Source1. 从集合读2. 从文件读取3. 从 socket 读取4. 从 kafka 读取5. 从数据生成器读取数据 2. 转换算子基本转换算子&#xff08;map/ filter/ flatMap&#xff09; 1. 源算子 Source Flink可以从各种来源获取数据&#xff0c;然后构建DataStream进行转换…

hcia datacom课程学习(5):MAC地址与arp协议

1.MAC地址 1.1 含义与作用 &#xff08;1&#xff09;含义&#xff1a; mac地址也称物理地址&#xff0c;是网卡设备在数据链路层的地址&#xff0c;全世界每一块网卡的mac地址都是唯一的&#xff0c;出厂时烧录在网卡上不可更改 &#xff08;2&#xff09;作用&#xff1a…

OKCC的API资源管理平台怎么用?

API资源管理平台&#xff0c;重点是“资源”管理平台&#xff0c;不是API接口管理平台。 天天讯通推出的API资源管理平台&#xff0c;类似昆石的VOS系统&#xff0c;区别是VOS是SIP资源管理系统&#xff0c;我们的API资源管理平台是API资源管理系统&#xff08;AXB、AX、回拨AP…

科技下乡:数字乡村改变乡村生活方式

在科技飞速发展的时代&#xff0c;数字化、信息化浪潮正以前所未有的速度席卷全球。在这场科技革命中&#xff0c;乡村不再是滞后的代名词&#xff0c;而是成为了数字乡村建设的热土。科技下乡&#xff0c;让数字乡村成为了改变乡村生活方式的重要力量。 一、科技下乡&#xf…

京东云8核16G服务器配置租用优惠价格1198元1年、4688元三年

京东云轻量云主机8核16G服务器租用优惠价格1198元1年、4688元三年&#xff0c;配置为8C16G-270G SSD系统盘-5M带宽-500G月流量&#xff0c;华北-北京地域。京东云8核16G服务器活动页面 yunfuwuqiba.com/go/jd 活动链接打开如下图&#xff1a; 京东云8核16G服务器优惠价格 京东云…

操作系统OS Chapter1

操作系统OS 一、概念和功能1.概念2.功能3.目标 二、特征1.并发2.共享3.虚拟4.异步 三、发展四、运行机制五、中断和异常1.中断的作用2.中断的类型3.中断机制的原理 六、系统调用七、操作系统结构八、操作系统引导九、虚拟机 一、概念和功能 1.概念 操作系统&#xff08;OS&…

harbor api v2.0

harbor api v2.0 v2.0 v2.0 “harbor api v2.0”与原来区别较大&#xff0c;此处harbor也做了https。另外&#xff0c;通过接口拿到的数据也是只能默认1页10个&#xff0c;所以脚本根据实际情况一页页的抓取数据 脚本主要用于统计repo、image&#xff0c;以及所有镜像的tag数&…

HTML网站的概念

目录 前言&#xff1a; 1.什么是网页&#xff1a; 2.什么是网站&#xff1a; 示例&#xff1a; 3.服务器&#xff1a; 总结&#xff1a; 前言&#xff1a; HTML也称Hyper Text Markup Language&#xff0c;意思是超文本标记语言&#xff0c;同时HTML也是前端的基础&…

IF= 13.4| 当eDNA遇上机器学习法

近日&#xff0c;凌恩生物客户重庆医科大学在《Water Research》&#xff08;IF 13.4&#xff09;发表研究论文“Supervised machine learning improves general applicability of eDNA metabarcoding for reservoir health monitoring”。该研究主要介绍了一种基于eDNA的机器学…

mysql的主从配置

MySQL主从复制是一种常见的数据库复制技术&#xff0c;用于实现数据在一个主数据库服务器和一个或多个从数据库服务器之间的同步。在主从配置中&#xff0c;主服务器负责接收和处理写操作&#xff0c;然后将这些变更通过binlog日志传播到从服务器&#xff0c;从服务器根据主服务…

【MySQL】7.MHA高可用配置及故障切换

什么是MHA MHA&#xff08;MasterHigh Availability&#xff09;是一套优秀的MySQL高可用环境下故障切换和主从复制的软件 mha用于解决mysql的单点故障问题&#xff1b; 出现故障时&#xff0c;mha能在0~30秒内自动完成故障切换&#xff1b; 并且能在故障切换过程中&#xff0…

《让你的时间多一倍》逃离时间陷阱,你没有自己想的那么懒 - 三余书屋 3ysw.net

让你的时间多一倍 今天我们来阅读法比安奥利卡尔的作品《让你的时间多一倍》。或许你会心生疑虑&#xff0c;这本书是否又是一本沉闷的时间管理指南&#xff1f;但我要告诉你的是&#xff0c;尽管时间管理这个话题已经为大众所熟知&#xff0c;这本书却为我们揭示了一个全新的…