Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions(IA-YOLO)

1、总体概述

基于深度学习的目标检测在常规条件的数据集可以获得不错的结果,但是在环境、场景、天气、照度、雾霾等自然条件的综合干扰下,深度学习模型的适应程度变低,检测结果也随之下降,因此研究在复杂气象条件下的目标检测方法就显得尤为重要。现有的方法在增强图像和目标检测之间很难做到平衡,有的甚至忽略有利于检测的信息。

本文为了解决上述问题,提出了IA-YOLO架构,该架构可以自适应的增强图像,以获得更好的检测结果。文中提出一个可微分的图像处理模块DIP,DIP使用轻量级的深度学习网络(CNN-PP)学习其参数,用以提高复杂天气状况下的目标检测性能。将DIP插入YOLOV3中,直接使用原有检测模型的分类和回归损失来弱监督DIP模块的参数,进而可以使用DIP模块进行图像增强。IA-YOLO代码tensorflow版本链接

2、IA-YOLO整体架构

高分辨率的图像(如1920*1080),缩放到低分辨率的图像(256*256),低分辨率的图像通过一个轻量级的CNN-PP模块,学习一组参数,文中在去雾过程中参数为15个,因此输出为【N,15】;高分辨率的图像,依次通过去雾、白平衡、Gamma增强、Tone、对比度Contrast、锐化Sharpen进行图像的增强操作,这个过程可以看作是图像的预处理阶段,预处理增强过后的图片,送入传统的YOLOV3检测器进行目标物体的检测,使用预测框和GT框的之间的分类和回归损失进行整个网络结构的监督,进而使得DIP模块学到自适应的参数。

3、可微过滤器介绍

3.1 Pixel-wise Filters

像素级的过滤器实际上就是对输入图像每个像素R、G、B三个通道的数值通过一定的映射,输出相对应的R、G、B三个通道的数值。文中提到四个Pixel-wise Filters,它们的映射关系函数如表所示。

由表可知,WB和Gamma都是通过简单的乘法以及幂指数变化来进行像素值的转换,因此,它们对于输入图像和需要学习的参数来说都是可微分的。

对于contrast的可微分设计,作者采用如下三个公式完成:

Lum(P_{i}) = 0.27r_{i} + 0.67g_{i}+ 0.06b_{i}              EnLum(P_{i}) =\frac{1}{2}(1-\cos (\pi\times (Lum(P_{i})) ))

En(P_{i}) = P_{i} \times \frac{EnLum(P_{i})}{Lum(P_{i}) }

对于Tone滤波器,作者将其设计成为一个单调分段函数,学习Tone filter需要使用L个参数,参数分别为\left \{ t_{0},t_{1},...,t_{L-1} \right \},tone曲线的点可表示为\left ( k/L,T_{k}/T_{L} \right ),其中T_{k} = \sum_{i=0}^{k-1}t_{l}。最终的映射函数为:

P_{o} = \frac{1}{T_{L}}\sum_{j=0}^{L-1}clip(L.P_{i}-j,0,1)t_{k}

3.2 Sharpen Filter

图像锐化可以凸显图像的细节信息,作者使用如下公式进行图像的锐化:

F(x,\lambda )=I(x)+\lambda (I(x)-Gau(I(x)))

其中,I(x)是输入图像,Gau(I(x))是对图像进行高斯变换,\lambda是一个大于0的缩放比例系数。

3.3 Defog Filter

去雾模型主要就是使用了大气散射模型,结合暗通道先验进行推算初来的结果,其中大气散射模型公式如下所示:

I(x) = J(x)t(x)+A(1-t(x))

其中A是全球大气光值,t(x)是转换参数,其定义如下:

t(x) = e^{-\beta }d(x)

去雾模型的具体过程参考之前的文章:Single Image Haze Removal Using Dark Channel Prior(暗通道先验)

4、CNN-PP模块

由前述网络的整体框架可知,CNN-PP是一个轻量级的全卷积网络,其输入是一个低分辨率的256*256图像,输出是一个【N,15】的向量,网络的具体结构可以看文中具体描述:

作者使用tensorflow实现的具体代码如下:

def extract_parameters(net, cfg, trainable):
    output_dim = cfg.num_filter_parameters
    # net = net - 0.5
    min_feature_map_size = 4
    print('extract_parameters CNN:')
    channels = cfg.base_channels
    print('    ', str(net.get_shape()))
    net = convolutional(net, filters_shape=(3, 3, 3, channels), trainable=trainable, name='ex_conv0',
                        downsample=True, activate=True, bn=False)
    net = convolutional(net, filters_shape=(3, 3, channels, 2*channels), trainable=trainable, name='ex_conv1',
                        downsample=True, activate=True, bn=False)
    net = convolutional(net, filters_shape=(3, 3, 2*channels, 2*channels), trainable=trainable, name='ex_conv2',
                        downsample=True, activate=True, bn=False)
    net = convolutional(net, filters_shape=(3, 3, 2*channels, 2*channels), trainable=trainable, name='ex_conv3',
                        downsample=True, activate=True, bn=False)
    net = convolutional(net, filters_shape=(3, 3, 2*channels, 2*channels), trainable=trainable, name='ex_conv4',
                        downsample=True, activate=True, bn=False)
    net = tf.reshape(net, [-1, 4096])
    features = ly.fully_connected(
        net,
        cfg.fc1_size,
        scope='fc1',
        activation_fn=lrelu,
        weights_initializer=tf.contrib.layers.xavier_initializer())
    filter_features = ly.fully_connected(
        features,
        output_dim,
        scope='fc2',
        activation_fn=None,
        weights_initializer=tf.contrib.layers.xavier_initializer())
    return filter_features

5、训练流程

作者在构建数据集的时候需要区分是雾天数据还是低照度数据,训练的每一个batch数据,其中的每一张图片有\frac{2}{3}的几率随机加上随机雾或者随机亮度变化,这样可以使得模型对于雾天或者低照度环境有更大的适应性。由于在训练过程中随机生成雾天图像会让整个训练时长成倍增加,因此,作者在线下完成雾天图像的生成。

其中雾天生成数据的主要代码如下所示:存疑的点是td = math.exp(-beta * d)这个公式,按照公式和自身理解,感觉应该是td = math.exp(-beta )d

def AddHaz_loop(img_f, center, size, beta, A):
            (row, col, chs) = img_f.shape

            for j in range(row):
                for l in range(col):
                    d = -0.04 * math.sqrt((j - center[0]) ** 2 + (l - center[1]) ** 2) + size
                    td = math.exp(-beta * d)
                    img_f[j][l][:] = img_f[j][l][:] * td + A * (1 - td)
            return img_f

6、实验结果

雾天检测效果:

低照度检测结果:

消融试验针对不同的filter进行的对比,可以看到具体结果如下:

 总体来说,IA-YOLO使用可微分的filter,使得图像在进入目标检测器之前进行增强操作,有效提高了最终的目标检出性能。

——END——

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/500957.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

shell的工作原理

本文旨在讲解shell的工作原理,希望读完本文,能使读者对shell的工作原理有一定的认识,废话不多说,开唠! 在讲解shell的工作原理之前,我要首先给大家讲一下什么是操作系统,以Linux操作系统为例&am…

第N6周:使用Word2vec实现文本分类

import torch import torch.nn as nn import torchvision from torchvision import transforms,datasets import os,PIL,pathlib,warnings #忽略警告信息 warnings.filterwarnings("ignore") # win10系统 device torch.device("cuda"if torch.cuda.is_ava…

[flink 实时流基础]源算子和转换算子

文章目录 1. 源算子 Source1. 从集合读2. 从文件读取3. 从 socket 读取4. 从 kafka 读取5. 从数据生成器读取数据 2. 转换算子基本转换算子(map/ filter/ flatMap) 1. 源算子 Source Flink可以从各种来源获取数据,然后构建DataStream进行转换…

hcia datacom课程学习(5):MAC地址与arp协议

1.MAC地址 1.1 含义与作用 (1)含义: mac地址也称物理地址,是网卡设备在数据链路层的地址,全世界每一块网卡的mac地址都是唯一的,出厂时烧录在网卡上不可更改 (2)作用&#xff1a…

OKCC的API资源管理平台怎么用?

API资源管理平台,重点是“资源”管理平台,不是API接口管理平台。 天天讯通推出的API资源管理平台,类似昆石的VOS系统,区别是VOS是SIP资源管理系统,我们的API资源管理平台是API资源管理系统(AXB、AX、回拨AP…

科技下乡:数字乡村改变乡村生活方式

在科技飞速发展的时代,数字化、信息化浪潮正以前所未有的速度席卷全球。在这场科技革命中,乡村不再是滞后的代名词,而是成为了数字乡村建设的热土。科技下乡,让数字乡村成为了改变乡村生活方式的重要力量。 一、科技下乡&#xf…

京东云8核16G服务器配置租用优惠价格1198元1年、4688元三年

京东云轻量云主机8核16G服务器租用优惠价格1198元1年、4688元三年,配置为8C16G-270G SSD系统盘-5M带宽-500G月流量,华北-北京地域。京东云8核16G服务器活动页面 yunfuwuqiba.com/go/jd 活动链接打开如下图: 京东云8核16G服务器优惠价格 京东云…

操作系统OS Chapter1

操作系统OS 一、概念和功能1.概念2.功能3.目标 二、特征1.并发2.共享3.虚拟4.异步 三、发展四、运行机制五、中断和异常1.中断的作用2.中断的类型3.中断机制的原理 六、系统调用七、操作系统结构八、操作系统引导九、虚拟机 一、概念和功能 1.概念 操作系统(OS&…

harbor api v2.0

harbor api v2.0 v2.0 v2.0 “harbor api v2.0”与原来区别较大,此处harbor也做了https。另外,通过接口拿到的数据也是只能默认1页10个,所以脚本根据实际情况一页页的抓取数据 脚本主要用于统计repo、image,以及所有镜像的tag数&…

HTML网站的概念

目录 前言: 1.什么是网页: 2.什么是网站: 示例: 3.服务器: 总结: 前言: HTML也称Hyper Text Markup Language,意思是超文本标记语言,同时HTML也是前端的基础&…

IF= 13.4| 当eDNA遇上机器学习法

近日,凌恩生物客户重庆医科大学在《Water Research》(IF 13.4)发表研究论文“Supervised machine learning improves general applicability of eDNA metabarcoding for reservoir health monitoring”。该研究主要介绍了一种基于eDNA的机器学…

mysql的主从配置

MySQL主从复制是一种常见的数据库复制技术,用于实现数据在一个主数据库服务器和一个或多个从数据库服务器之间的同步。在主从配置中,主服务器负责接收和处理写操作,然后将这些变更通过binlog日志传播到从服务器,从服务器根据主服务…

【MySQL】7.MHA高可用配置及故障切换

什么是MHA MHA(MasterHigh Availability)是一套优秀的MySQL高可用环境下故障切换和主从复制的软件 mha用于解决mysql的单点故障问题; 出现故障时,mha能在0~30秒内自动完成故障切换; 并且能在故障切换过程中&#xff0…

《让你的时间多一倍》逃离时间陷阱,你没有自己想的那么懒 - 三余书屋 3ysw.net

让你的时间多一倍 今天我们来阅读法比安奥利卡尔的作品《让你的时间多一倍》。或许你会心生疑虑,这本书是否又是一本沉闷的时间管理指南?但我要告诉你的是,尽管时间管理这个话题已经为大众所熟知,这本书却为我们揭示了一个全新的…

【Roadmap to learn LLM】Large Language Models in Five Formulas

by Alexander Rush Our hope: reasoning about LLMs Our Issue 文章目录 Perpexity(Generation)Attention(Memory)GEMM(Efficiency)用矩阵乘法说明GPU的工作原理 Chinchilla(Scaling)RASP(Reasoning)结论参考资料 the five formulas perpexity —— generationattention —— m…

PyCharm中配置PyQt5并添加外部工具

Qt Designer、PyUIC和PyRcc是Qt框架下的三个重要工具,总的来说,这三个工具各司其职,相辅相成,能显著提升Qt开发的速度与效率。 Qt Designer:是一个用于创建图形用户界面的工具,可轻松构建复杂的用户界面。…

matlab及其在数字信号处理中的应用001:软件下载及安装

目录 一,matlab的概述 matlab是什么 matlab适用于的问题 matlab的易扩展性 二,matlab的安装 1,解压所有压缩文件 2,解压镜像压缩文件 3,运行setup.exe 4,开始安装 5,不要运行软件…

EasyBoss ERP上线实时数据大屏,Shopee本土店铺数据实时监测

近日,灵隐寺PPT汇报用上数据大屏疯狂刷屏,有做东南亚本土电商的老板发现这种数据大屏的模式可以很好地展现店铺运营状况。 所以就有老板来问:EasyBoss能不能也上线实时数据大屏的功能?没问题!立马安排! 要有…

BasicVSR++模型转JIT并用c++libtorch推理

BasicVSR模型转JIT并用clibtorch推理 文章目录 BasicVSR模型转JIT并用clibtorch推理安装BasicVSR 环境1.下载源码2. 新建一个conda环境3. 安装pytorch4. 安装 mim 和 mmcv-full5. 安装 mmedit6. 下载模型文件7. 测试一下能否正常运行 转换为JIT模型用c libtorch推理效果 安装Ba…

只出现一次的数字 II

题目链接 只出现一次的数字 II 题目描述 注意点 nums中,除某个元素仅出现一次外,其余每个元素都恰出现三次设计并实现线性时间复杂度的算法且使用常数级空间来解决此问题 解答思路 本题与只出现一次的数字的数字类似,区别是重复的数字会…