深度学习pytorch——卷积神经网络(持续更新)

计算机如何解析图片?

在计算机的眼中,一张灰度图片,就是许多个数字组成的二维矩阵,每个数字就是此点的像素值(图-1)。在存储时,像素值通常位于[0, 255]区间,在深度学习中,像素值通常位于[0, 1]区间。

图-1

一张彩色图片,是使用三张图片叠加而成,即RGB(red green blue)(图-2)。

图-2

什么是卷积?

标准的神经网络是全连接的方式,全连接会获取更多的信息,但同时也包含着巨大的算力需求。在以前,算力完全不足以支撑如此巨大的计算量,但是又要进行处理,因此当时的人们联想到了人类观察事物的过程,即结合人眼观察事物的角度——先观察吸引我们的点,忽略不吸引我们的点,这称为局部相关性(Receptive Field。应用到神经网络中,就出现了卷积的概念。

卷积操作就是先仅仅观察一部分,然后移动视野观察下一部分,这就称为卷积操作(图-3)。

图-3

表现在神经网络中就相当于只连接局部相关性的属性(假设红色的线都是相关的,其它的都断开,当然红色的线都是我自己瞎画的),如图-4所示:

图-4

 表现在实例上就是图-5的情况:

图-5

卷积的数学表示:设x(t)为输入的数据,h(t)为遍历使用的矩阵,y(t)为经过卷积计算得到的矩阵,将x(t)和h(t)进行点乘运算,将每次点成的结果进行累加得到y(t)对应元素的值(公式-1)。 

公式-1

 宏观效果(图-6):

图-6

实例

以不同的 h(t) 进行卷积操作,会获取到不同的特征:

锐化(图-7):

图-7

 模糊处理(图-8):

图-8

 边缘检测(图-9):

图-9

卷积神经网络

 图-3 是以1个Kernel_channel进行卷积运算。以多个Kernel_channels进行卷积运算(图-10):

图-10

假设原来的图像是一个28*28的灰度图像,即[1, 28, 28]。使用3*3的特征矩阵以7个角度来观察这副图像,最后得到的卷积层是[7, 26, 26]。

称呼声明:

Input_channels :输入的图像的通道,彩色图像就是3,灰度图像就是1

Kernel_channels: 以多少个视角来观察图像

Kernel_size : 特征矩阵的size

Stride: 每次向下/左移动的步长

Padding: 空白的数量,补0

实例(图-11),注意右下角的标注,每个圈中的值必须相等。将同一视角不同通道得出来的矩阵进行叠加,最后会得到一个高维的特性。卷积的过程叫做特征提取。 

图-11

输出图像的大小计算(公式-2):

公式-2

代码示例:

# 1、
x=torch.rand(1,1,28,28)  #[b,c,h,w]
layer=nn.Conv2d(1,3,kernel_size=3,stride=1,padding=0) # weight [3,1,3,3],不补零
out=layer.forward(x)
print(out.shape)
#torch.Size([1, 3, 26, 26])

# 2、
layer=nn.Conv2d(1,3,kernel_size=3,stride=1,padding=1) # weight [3,1,3,3],补零
out=layer.forward(x)
print(out.shape)
#torch.Size([1, 3, 14, 14])

# 3、
layer=nn.Conv2d(1,3,kernel_size=3,stride=2,padding=1) # weight [3,1,3,3],补零
out=layer.forward(x)
print(out.shape)
#torch.Size([1, 3, 14, 14])

# 说明:
#现在基本不用layer.forward,而是用layer
out=layer(x) #推荐使用
print(out.shape)
#torch.Size([1, 3, 14, 14])

###### inner weight $ bias #########
#直接调用
print(layer.weight)
# Parameter containing:
# tensor([[[[-0.1249, -0.3302, -0.1774],
#           [-0.1542,  0.0873,  0.0282],
#           [-0.0006, -0.1798, -0.1030]]],
#
#
#         [[[ 0.1932,  0.3240,  0.1747],
#           [-0.2188, -0.1775, -0.0652],
#           [-0.1455, -0.1220,  0.0629]]],
#
#
#         [[[ 0.2596,  0.3017,  0.2028],
#           [-0.2629, -0.0715,  0.3267],
#           [ 0.3174, -0.1441, -0.1714]]]], requires_grad=True)

print(layer.weight.shape)
# torch.Size([3, 1, 3, 3])

print(layer.bias.shape)
# torch.Size([3])

向上/向下采样

最大采样,选取最大的(图-12):

图-12

 代码演示:

x=out
print(x.shape)
#torch.Size([1, 3, 14, 14])

layer=nn.MaxPool2d(2,stride=2) #最大池化,2*2的滑动窗口,步长为2
out=layer(x) #推荐使用
print(out.shape)
#torch.Size([1, 3, 7, 7])

平均采样,选择平均值(图-13):

图-13

 代码演示:

x=out
print(x.shape)
#torch.Size([1, 3, 14, 14])

out=F.avg_pool2d(x,2,stride=2) #平均池化,2*2的滑动窗口,步长为2
print(out.shape)
#torch.Size([1, 3, 7, 7])

上采样,选取最邻近的(图-14):

扩展到卷积层呢?以一个5层的卷积层为例,进行分析:

 代码演示:

x=out
print(out.shape)
# torch.Size([1, 3, 7, 7])
out=F.interpolate(x,scale_factor=2,mode='nearest')# 为放大倍数
print(out.shape) 
# torch.Size([1, 3, 14, 14])
out=F.interpolate(x,scale_factor=3,mode='nearest')
print(out.shape)
# torch.Size([1, 3, 21, 21])

 扩展到卷积层

图-16

1、输入是一个32*32的灰度图像[1, 32, 32],使用一个3*3的特征矩阵进行卷积,分别从6个角度进行卷积,步长为1,会得到一个[6,1,28,28]的图像
2、上采样-》[6,1,14,14]
3、卷积-》[16,1,10,10]
4、上采样-》[16,1,5,5]
5、全连接
6、全连接
7、高斯分布

ReLU

图-17

 代码演示:

#两种方式,一种是nn.ReLU,另一种是F.relu
x=out
print(x.shape)
#torch.Size([1, 3, 7, 7])

layer=nn.ReLU(inplace=True)
out=layer(x)
print(out.shape)
#torch.Size([1, 3, 7, 7])

#与上面三行等价
out=F.relu(x)
print(out.shape)
#torch.Size([1, 3, 7, 7])

#relu激活函数并不改变size大小

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/500560.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥OJ3514 子串简写 (暴力+二分)

子串简写 一.暴力 思路: 只能通过60%。 从字符串开头遍历&#xff0c;如果遇到c1就进入子遍历&#xff0c;遇到长度大于等于k且以c2结尾的子串就使cnt;遍历完之后再从外遍历找c1。 这种方法的弊端在于&#xff1a;外遍历 #include<bits/stdc.h> using namespace std; con…

网络安全新视角:数据可视化的力量

在当今数字化时代&#xff0c;网络安全已成为各大企业乃至国家安全的重要组成部分。随着网络攻击的日益复杂和隐蔽&#xff0c;传统的网络安全防护措施已难以满足需求&#xff0c;急需新型的解决方案以增强网络防护能力。数据可视化技术&#xff0c;作为一种将复杂数据转换为图…

备考ICA----Istio实验13---使用 Istio Ingress 暴露应用

备考ICA----Istio实验13—使用Istio Ingress TLS暴露应用 1. 环境部署 清理之前实验遗留,并重新部署httpbin服务进行测试 # 清理之前的环境 kubectl delete vs httpbin kubectl delete gw mygateway # 部署httpbin kubectl apply -f istio/samples/httpbin/httpbin.yaml 确认…

Android RecyclerView 滑动后选中的条目居中显示

话不多说先看效果: 实录效果视频如下 滚动居中 RecyclerView 在原有的RecyclerView 基础上操作&#xff0c;其他步骤不变&#xff0c;只是替换一下 manager 步骤 导入依赖 maven { url https://www.jitpack.io }//无限滚动implementation com.github.ZhaoChanghu:GalleryLayou…

爬虫(Web Crawler)逆向技术探索

实战案例分析 为了更好地理解爬虫逆向的实际应用&#xff0c;我们以一个具体的案例进行分析。 案例背景 假设我们需要从某电商网站上获取商品价格信息&#xff0c;但该网站采取了反爬虫措施&#xff0c;包括动态Token和用户行为分析等。 分析与挑战 动态Token&#xff1a;…

github拉取的项目添加至自己的仓库

想把GitHub的开源项目拉到本地进行二开&#xff0c;研究了一下上传到gitee的步骤&#xff1a; 步骤 gitee新建仓库&#xff0c;仓库名与本地文件夹的名称一致&#xff0c;建好后gitee的页面也会有显示git命令 打开项目目录&#xff0c;右键打开git bash&#xff08;或者在git…

数据增强项目 | 用于目标检测的训练数据增强

项目应用场景 面向增强目标检测训练数据集&#xff0c;采用 Horizontal Flipping、Scaling、Translation、Rotation、Shearing、Resizing 等方法进行数据集的增强和丰富&#xff0c;能够提高目标检测算法的鲁棒性 项目效果&#xff1a; 项目细节 > 具体参见项目 README.md …

图论-二分图

一、二分图判定 1.1 二分图概念及应用 1.概念 二分图的顶点集可分割为两个互不相交的子集&#xff0c;图中每条边依附的两个顶点都分属于这两个子集&#xff0c;且两个子集内的顶点不相邻。 给你一幅「图」&#xff0c;请你用两种颜色将图中的所有顶点着色&#xff0c;且使得…

Linux多进程开发1 - 进程概述

一、并行和并发 并行 & 并发&#xff1a;有一个例子可以清晰地解释这二位的区别。如果将处理器(CPU)比作咖啡机&#xff0c;指令比作排队买咖啡的客人&#xff0c;则&#xff1a; 并发是两个队列交替使用同一台咖啡机&#xff1b;并行是两个队列同时使用两台咖啡机 二、进…

vue 窗口内容滚动到底部

onMounted(() > {scrollToBottom() }) // 滚动到底部方法 const scrollToBottom () > {// 获取聊天窗口容器let chatRoom: any document.querySelector(".chat-content");// 滚动到容器底部chatRoom.scrollTop chatRoom.scrollHeight; } 效果 聊天窗口代码…

深入理解数据结构第一弹——二叉树(1)——堆

前言&#xff1a; 在前面我们已经学习了数据结构的基础操作&#xff1a;顺序表和链表及其相关内容&#xff0c;今天我们来学一点有些难度的知识——数据结构中的二叉树&#xff0c;今天我们先来学习二叉树中堆的知识&#xff0c;这部分内容还是非常有意思的&#xff0c;下面我们…

常见的Nginx+Redis+MQ+DB架构设计

三高&#xff0c;复杂的架构 SQRS CAP 缓存&#xff0c;限流 【Redis&#xff0c;缓存】 cache-aside 缓存cache&#xff1a;数据源的副本 store 1. Read/Write Through Pattern 读写穿透模式 redis&#xff1a;放当前在线用户&#xff0c;热点数据

Codeforces Round 937 (Div. 4)(A,B,C,D,E,F,G)

比赛链接 这场简单&#xff08;话说div4好少啊&#xff0c;打了二十多把了就两把div4&#xff09;。D直接暴力就可以&#xff0c;E是暴力&#xff0c;F考察了树的性质&#xff0c;根据性质算数就行了&#xff0c;G是个状压。 A. Stair, Peak, or Neither? 题意&#xff1a; …

Github 2024-03-29 Java开源项目日报 Top9

根据Github Trendings的统计,今日(2024-03-29统计)共有9个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Java项目9JavaGuide - Java 程序员学习和面试指南 创建周期:2118 天开发语言:Java协议类型:Apache License 2.0Star数量:140773 个Fork数量:…

HarmonyOS 应用开发之线程模型

Stage模型下的线程主要有如下三类&#xff1a; 主线程 执行UI绘制。管理主线程的ArkTS引擎实例&#xff0c;使多个UIAbility组件能够运行在其之上。管理其他线程的ArkTS引擎实例&#xff0c;例如使用TaskPool&#xff08;任务池&#xff09;创建任务或取消任务、启动和终止Wor…

【Django学习笔记(二)】CSS语言介绍

CSS语言介绍 前言正文1、CSS 快速了解2、CSS 应用方式2.1 在标签上应用2.2 在head标签中写style标签2.3 写到文件中 3、问题探讨&#xff1a;用Flask框架开发不方便4、选择器4.1 ID选择器4.2 类选择器4.3 标签选择器4.4 属性选择器4.5 后代选择器4.6 注意事项 5、样式5.1 高度和…

Spring Transaction 指定事务管理器问题

一&#xff0c;单个数据源&#xff0c;单个事务管理器与Transactional默认事务管理器名称不一致问题 在平时代码中使用声明性事务时&#xff0c;直接在方法上面加注解即可&#xff0c;如下 Transactional(rollbackFor Exception.class) 并没有指定事务管理器&#xff0c;为…

Flink学习(一)-flink 本地部署

1&#xff0c;安装 jdk 官网推荐 jdk11 版本。我用 17也可以跑起来 2&#xff0c;下载 flink-1.19 的版本并解压 下载 release 1.19.0 并解压。 tar -xzf flink-1.19.0-bin-scala_2.12.tgz cd flink-1.19.0 3&#xff0c;启动 ./bin/start-cluster.sh 4&#xff0c;访问…

主干网络篇 | YOLOv8更换主干网络之EfficientNet

前言:Hello大家好,我是小哥谈。EfficientNet是一种高效的卷积神经网络架构,由Mingxing Tan和Quoc V. Le在2019年提出,其设计思想是在不增加计算复杂度的情况下提高模型的准确性。它引入了一个称为"复合系数"的概念,该系数用于同时缩放网络的深度、宽度和分辨率。…

Web开发-Django学习笔记

客户端如何获取服务端的数据信息&#xff1f; 通常 是 HTTP网络协议&#xff0c;通过网络传输数据信息。 客户端通过HTTP协议发送请求信息给服务端&#xff0c;并从服务端接收响应信息。 Web 前端开发&#xff1a; &#xff08;HTML、CSS、JS&#xff09;文件部署在后端服务…