【数据结构 | 图论】如何用链式前向星存图(保姆级教程,详细图解+完整代码)

一、概述

链式前向星是一种用于存储图的数据结构,特别适合于存储稀疏图,它可以有效地存储图的边和节点信息,以及边的权重。

它的主要思想是将每个节点的所有出边存储在一起,通过数组的方式连接(类似静态数组实现链表)。这种方法的优点是存储空间小,查询速度快,尤其适合于处理大规模的图数据,在一些笔试或者竞赛的场景中经常使用

下面,我们用这张图来图解一下链式前向星的存储逻辑:

在这里插入图片描述

二、前置准备

注意看这里的设定,以及我加粗的提示。

  1. head数组:head[i]存储的是节点i的第一条边的编号。这样,我们可以通过head[i]快速找到从节点i出发的所有边。

  2. next数组:next[j]存储的是编号为j的边的下一条边的编号。这样,我们可以通过next[j]快速找到从同一个节点出发的下一条边。

  3. to数组:to[j]存储的是编号为j的边的终点节点编号。这样,我们可以通过to[j]快速找到边j的终点,也就是这条边要去往哪里。

  4. weight数组:weight[j]存储的是编号为j边的权重。这样,我们可以通过weight[j]快速找到边j的权重。

  5. cnt变量:cnt用于存储边的数量,也表示边的编号。每添加一条边,cnt就会增加1。这样,我们可以通过cnt快速知道当前图中边的数量,同时我们也认为cnt是新添加边的编号

三、初始化

public static void build(int n) {
	cnt = 1; // 边从1开始编号
	Arrays.fill(head, 1, n + 1, 0); // head[1 ... n] 全设为 0
}

在链式前向星中,我们使用cnt来作为边的编号,由于边的编号是从1开始的,所以初始化时我们将cnt设置为1。同时,将head数组的所有元素设置为0。因为head[i]存储的是节点i的第一条边的编号,所以,如果节点i没有出度(即没有从节点i出发的边),那么head[i]就应该为0。初始化时所有节点都没有出度,后续在添加边的时候,会更新对应的head[i]的值。

在这里插入图片描述

四、添加边(重点)

在链式前向星中添加边的操作是最核心的,它涉及到headnexttoweight数组的更新,以及边的编号cnt的自增。

在看代码之前,我们先回顾一下各个结构的下标以及值的含义:

  1. head数组:下标i表示节点编号,值head[i]表示从节点i出发的第一条边的编号。

  2. next数组:下标j表示边的编号,值next[j]表示编号为j的边的下一条边的编号。

  3. to数组:下标j表示边的编号,值to[j]表示编号为j的边的终点节点编号。

  4. weight数组:下标j表示边的编号,值weight[j]表示编号为j的边的权重。

结合上述含义,我们来看代码就很清晰了:

// (u, v, w): 有一条边,从u节点指向v节点,权重为w
// 在每一次添加边时,cnt都表示当前未分配的边的编号,添加边后cnt需++
public static void addEdge(int u, int v, int w) {
    next[cnt] = head[u];
    to[cnt] = v;
    weight[cnt] = w;
    head[u] = cnt;
    ++cnt;
}

首先,我们需要更新next数组。next[cnt]存储的是编号为cnt的边的下一条边的编号。在添加新边时,我们将新边的next置为旧的头边号head[u],这样就可以通过next[cnt]快速找到从节点u出发的下一条边。

然后,我们需要更新to数组,将新边的终点设置为v,这样就可以通过to[cnt]快速找到边cnt的终点。

更新weight数组也很自然,就是将新边的权重设置为w,最后,我们将节点u的头边号修改为当前新边的编号,这样就可以通过head[u]快速找到从节点u出发的第一条边。

备注:记得每添加一条边,边的编号cnt就需要增加1

五、建图

建图分为有向图与无向图,输入的参数是一个二维数组edges作为输入,这个数组的每个元素都是一个长度为3的数组,代表一条边的两个端点和这条边的权重。

// 建有向图
public static void directGraph(int[][] edges) {
	for (int[] edge : edges) {
		addEdge(edge[0], edge[1], edge[2]); // 添加有向边
	}
}

// 建无向图
public static void undirectGraph(int[][] edges) {
	for (int[] edge : edges) {
		addEdge(edge[0], edge[1], edge[2]); // 添加边
		addEdge(edge[1], edge[0], edge[2]); // 添加反向边
	}
}

六、图解

下面这个数组提供了图的边信息,基本上题目都会给定形式的信息,让你去建图:

有一条边(u, v, w),表示从u节点指向v节点,权重为w
[
	[1, 6, 2],
	[1, 3, 57],
	[1, 4, 61],
	[2, 3, 100],
	[3, 5, 34],
	[4, 5, 13],
]

这里 u,v,w 的含义以及顺序应根据具体题目具体分析,这里的设定是(u, v, w)表示一条边从u节点指向v节点,权重为w

// 添加边:
public static void addEdge(int u, int v, int w) {
    next[cnt] = head[u];
    to[cnt] = v;
    weight[cnt] = w;
    head[u] = cnt;
    ++cnt;
}

下面我们图解一下,在链式前向星中,依次添加6条边到有向图中的逻辑。

在这里插入图片描述

如果看不懂,建议返回上面去看各个数组的下标以及值的含义。

添加边 {1, 6, 2}

  • head[1] = 1:节点1的第一条边的编号是1。
  • next[1] = 0:边1没有下一条边。
  • to[1] = 2:边1的终点是节点2。
  • weight[1] = 6:边1的权重是6。
  • cnt:2,表示当前边的数量是1,下一条边的编号是2。

在这里插入图片描述

添加边 {1, 3, 57}

  • head[1] = 2:节点1的第一条边的编号是2。
  • next[2] = 1:边2的下一条边是边1。
  • to[2] = 3:边2的终点是节点3。
  • weight[2] = 57:边2的权重是57。
  • cnt:3,表示当前边的数量是2,下一条边的编号是3。

在这里插入图片描述

添加边 {1, 4, 61}

  • head[1] = 3:节点1的第一条边的编号是3。
  • next[3] = 2:边3的下一条边是边2。
  • to[3] = 4:边3的终点是节点4。
  • weight[3] = 61:边3的权重是61。
  • cnt:4,表示当前边的数量是3,下一条边的编号是4。

在这里插入图片描述

添加边 {2, 3, 100}

  • head[2] = 4:节点2的第一条边的编号是4。
  • next[4] = 0:边4没有下一条边。
  • to[4] = 3:边4的终点是节点3。
  • weight[4] = 100:边4的权重是100。
  • cnt:5,表示当前边的数量是4,下一条边的编号是5。

在这里插入图片描述

添加边 {3, 5, 34}

  • head[3] = 5:节点3的第一条边的编号是5。
  • next[5] = 0:边5没有下一条边。
  • to[5] = 5:边5的终点是节点5。
  • weight[5] = 34:边5的权重是34。
  • cnt:6,表示当前边的数量是5,下一条边的编号是6。

在这里插入图片描述

添加边 {4, 5, 13}

  • head[4] = 6:节点4的第一条边的编号是6。
  • next[6] = 0:边6没有下一条边。
  • to[6] = 5:边6的终点是节点5。
  • weight[6] = 13:边6的权重是13。
  • cnt:7,表示当前边的数量是6,下一条边的编号是7。

在这里插入图片描述

七、遍历图

遍历图的逻辑也不难理解,就是对于每个节点,遍历其所有的邻居,根据next数组不断去拿到和每个节点连接的边的编号,直到没有邻居节点为止,一步步跳着找嘛。

步骤如下:

  • 对于每个节点,通过head数组找到该节点的第一条边。
  • 通过next数组找到下一条边,直到next数组的值为0,表示没有更多的边。
  • 在遍历过程中,可以通过toweight数组获取边的终点和权重。

我们用打印邻居节点的方式来验证遍历的结果:

public static void traversal(int n) {
	StringBuilder sb = new StringBuilder();
	sb.append("链式前向星遍历,u: (v, w)表示u有一条边前往v,权重为w\n");
	for (int i = 1; i <= n; i++) {
		sb.append("[").append(i).append("]: ");
		for (int ei = head[i]; ei > 0; ei = next[ei]) {
			sb.append("(").append(to[ei]).append(",").append(weight[ei]).append(") "); // 输出边的终点和权重
		}
		sb.append("\n");
	}
	System.out.println(sb.toString()); // 打印结果
}

八、完整代码

package cn.zhengyiyi;

import java.util.Arrays;

public class Main {

	public static int N = 11;
	public static int M = 21; 
	
	/**
	 * 编号为 i 的节点,其第一条边的编号为 head[i]
	 * 备注:如果 head[i] 为0,说明没有一条边从节点 i 出发
	 */
	public static int[] head = new int[N];
	
	/**
	 * 编号为 i 的边,它的下一条边是 next[i],
	 */
	public static int[] next = new int[M];
	
	/**
	 * 编号为 i 的边,前往的节点是 to[i],也就是第 i 条边的终点是 to[i]
	 */
	public static int[] to = new int[M];
	
	/**
	 * 编号为 i 的边,权重是 weight[i]
	 */
	public static int[] weight = new int[M];
	
	/**
	 *  记录边的数量,初始时值为 1
	 */
	public static int cnt;

	// 初始化链式前向星
	public static void build(int n) {
		cnt = 1; // 边从1开始编号
		Arrays.fill(head, 1, n + 1, 0); // head[1 ... n] 全设为 0
	}

	// 添加一条边:(u->v,权重为w)
	public static void addEdge(int u, int v, int w) {
		// 1. 更新next数组,将新边的next置为旧的头边号head[u],方便后续跳到旧的头边号
		next[cnt] = head[u];
		
		// 2. 更新to数组,设置当前新边的终点为v
		to[cnt] = v; 
		
		// 3. 更新weight数组,设置当前边的权重w
		weight[cnt] = w;
		
		// 4. 更新head数组,将原先的头边号修改为当前新边
		head[u] = cnt;
		
		// 5. 最后边的编号要自增
		++cnt;
	}

	// 建立有向图
	public static void directGraph(int[][] edges) {
		for (int[] edge : edges) {
			addEdge(edge[0], edge[1], edge[2]); // 添加有向边
		}
	}
	
	// 建立无向图
	public static void undirectGraph(int[][] edges) {
		for (int[] edge : edges) {
			addEdge(edge[0], edge[1], edge[2]); // 添加边
			addEdge(edge[1], edge[0], edge[2]); // 无向图需要添加反向边
		}
	}

	// 遍历图
	public static void traversal(int n) {
		StringBuilder sb = new StringBuilder();
		sb.append("链式前向星遍历,u: (v, w)表示u有一条边前往v,权重为w\n");
		for (int i = 1; i <= n; i++) {
			sb.append("[").append(i).append("]: ");
			for (int ei = head[i]; ei > 0; ei = next[ei]) {
				sb.append("(").append(to[ei]).append(",").append(weight[ei]).append(") "); // 输出边的终点和权重
			}
			sb.append("\n");
		}
		System.out.println(sb.toString()); // 打印结果
	}

	public static void main(String[] args) {
	    int n = 5; // 节点数
	    build(n); // 初始化

	    int[][] directEdges = { // 有向图的边
	            { 1, 6, 2 },
	            { 1, 3, 57 },
	            { 1, 4, 61 },
	            { 2, 3, 100 },
	            { 3, 5, 34 },
	            { 4, 5, 13 }
	    };
	    directGraph(directEdges); // 建立有向图
	    traversal(n); // 遍历有向图
	}
}

运行结果:

链式前向星遍历,u: (v, w)表示u有一条边前往v,权重为w
[1]: (4,61) (3,57) (6,2) 
[2]: (3,100) 
[3]: (5,34) 
[4]: (5,13) 
[5]: 

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/499028.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于Springboot+Vue的酒店管理系统!新鲜出炉,可商用,带源码

新年了给大家分享一套基于SpringbootVue的酒店管理系统源码&#xff0c;在实际项目中可以直接复用。(免费提供&#xff0c;文末自取) 一、系统运行图&#xff08;管理端和用户端&#xff09; 1、管理登陆 2、房间管理 3、订单管理 4、用户登陆 5、房间预定 二、系统搭建视频教…

JavaEE—— HTTP协议和与Tomcat (末篇)

本篇文章&#xff0c;承接前面两篇文章&#xff1a; 在前面的两篇文章中&#xff0c;简单介绍了 什么是 HTTP 协议&#xff0c;介绍了抓包工具&#xff0c;如何构造 HTTP 请求&#xff0c;以及&#xff0c;如何使用第三方工具来简化构造请求的过程。 如果需要了解前面的知识可…

算法---动态规划练习-6(地下城游戏)

地下城游戏 1. 题目解析2. 讲解算法原理3. 编写代码 1. 题目解析 题目地址&#xff1a;点这里 2. 讲解算法原理 首先&#xff0c;定义一个二维数组 dp&#xff0c;其中 dp[i][j] 表示从位置 (i, j) 开始到达终点时的最低健康点数。 初始化数组 dp 的边界条件&#xff1a; 对…

AI赋能微服务:Spring Boot与机器学习驱动的未来应用开发

&#x1f9d1; 作者简介&#xff1a;阿里巴巴嵌入式技术专家&#xff0c;深耕嵌入式人工智能领域&#xff0c;具备多年的嵌入式硬件产品研发管理经验。 &#x1f4d2; 博客介绍&#xff1a;分享嵌入式开发领域的相关知识、经验、思考和感悟。提供嵌入式方向的学习指导、简历面…

实践笔记-harbor搭建(版本:2.9.0)

harbor搭建 1.下载安装包&#xff08;版本&#xff1a;2.9.0&#xff09;2.修改配置文件3.安装4.访问harbor5.可能用得上的命令: 环境&#xff1a;centos7 1.下载安装包&#xff08;版本&#xff1a;2.9.0&#xff09; 网盘资源&#xff1a;https://pan.baidu.com/s/1fcoJIa4x…

Vue中的一些指令与计算方法

语法 插值语法 HTML的双标签内容中使用&#xff0c;在{{}}之内书写JS代码 属性语法 1.v-bind或: 2.:属性名"值"或v-bind"值" 事件语法 v-on或 v-on:事件名"方法名"或事件名"方法名" 选项 选项&#xff1a;可选的配置项——官方…

vue3封装Element动态表单组件

1. 封装组件DymanicForm.vue 使用component实现动态组件组件不能直接使用字符串传入&#xff0c;所以根据传入的组件名称找到对应的组件校验规则&#xff0c;可使用rule传入自定义规则&#xff0c;也可以使用封装好的基本规则 示例中使用了checkRequired暴露重置方法和校验方法…

奥比中光Astra SDK相机SDK openni相机成像原理

目录 1.1 成像原理简介 1.1.1 结构光 1.1.2 双目视觉 1.1.3 光飞行时间TOF​ 2.使用手册 参考网址 2.1 产品集成设计 2.2 SDK介绍与使用 2.3 常用API介绍 OPENNI API 2 OpenNI类&#xff08;OpenNI.h&#xff09; 1.1 成像原理简介 1.1.1 结构光 结构光&#xff0…

Elastic 8.13:Elastic AI 助手中 Amazon Bedrock 的正式发布 (GA) 用于可观测性

作者&#xff1a;来自 Elastic Brian Bergholm 今天&#xff0c;我们很高兴地宣布 Elastic 8.13 的正式发布。 有什么新特性&#xff1f; 8.13 版本的三个最重要的组件包括 Elastic AI 助手中 Amazon Bedrock 支持的正式发布 (general availability - GA)&#xff0c;新的向量…

小狐狸JSON-RPC:钱包连接,断开连接,监听地址改变

detect-metamask 创建连接&#xff0c;并监听钱包切换 一、连接钱包&#xff0c;切换地址&#xff08;监听地址切换&#xff09;&#xff0c;断开连接 使用npm安装 metamask/detect-provider在您的项目目录中&#xff1a; npm i metamask/detect-providerimport detectEthereu…

【MySQL】5.2MySQL高级语句与sql语句

模板 test、class、class0 mysql> select * from test; -------------------------------- | idcard | name | age | hobbid | -------------------------------- | 01 | lizi | 18 | guangjie | | 02 | monor | 22 | zhaijia | | 03 | sansan | …

对form表单对象中数组中的字段进行校验的方法

当对form表单中&#xff0c;数组readings中的字段进行校验时&#xff0c;prop和rules绑定要写成动态的&#xff0c;如下代码 <div v-for"(item,index) in form.readings"><el-form-item label"上次读数" > <!--prop"scds"-->…

Pytorch入门实战 P4-猴痘图片,精确度提升

目录 一、前言&#xff1a; 二、前期准备&#xff1a; 1、设备查看 2、导入收集到的数据集 3、数据预处理 4、划分数据集&#xff08;8:2&#xff09; 5、加载数据集 三、搭建神经网络 四、训练模型 1、设置超参数 2、编写训练函数 3、编写测试函数 4、正式训练 …

LabVIEW智能降噪系统

LabVIEW智能降噪系统 随着噪声污染问题的日益严重&#xff0c;寻找有效的降噪技术变得尤为关键。介绍了一种基于LabVIEW平台开发的智能降噪系统&#xff0c;该系统能够实时采集环境噪声&#xff0c;并通过先进的信号处理技术实现主动降噪&#xff0c;从而有效改善生活和工作环…

kubernetes(K8S)学习(五):K8S进阶(Lifecycle......偏理论)

K8S进阶&#xff08;Lifecycle......偏理论&#xff09; 一、Pod进阶学习之路1.1 Lifecycle1.2 重启策略1.3 静态Pod1.4 健康检查1.5 ConfigMap1.6 Secret1.7 指定Pod所运行的Node 二、Controller进阶学习之路2.1 Job & CronJob2.2 StatefulSet2.3 DaemonSet2.4 Horizontal…

vue3 渲染一个后端返回的图片字段渲染、table表格内放置图片

一、后端直接返回图片url 当图片字段接口直接返回的是图片url&#xff0c;可以直接放到img标签上 <img v-if"thumbLoader" class"r-image-loader-thumb" :src"resUrl" /> 二、当图片字段接口直接返回的是图片Id 那么就需要去拼一下图片…

改Jenkins版本号

旧服务器迁移到新&#xff0c;打包版本号更新 Jenkins.instance.getItemByFullName("双机热备").updateNextBuildNumber(65)

知识蒸馏到底怎么蒸?

1知识蒸馏简介 定义&#xff1a;知识蒸馏代表将知识从大模型向小模型传输的过程。 作用&#xff1a;可以用于模型压缩和训练加速 手段。 2基于响应的知识&#xff08;Response-Based Knowledge&#xff09; 基于响应的知识一般指的是神经元的响应&#xff0c;即教师模型的最…

前端学习<二>CSS基础——09-CSS案例讲解:博雅互动

前言 CSS已经学了一些基础内容了&#xff0c;我们来讲解一个小案例吧。以博雅互动的官网首页举例。 版心 首页的版心如下&#xff1a; 这里我们要普及一个概念&#xff0c;叫“版心”。版心是页面中主要内容所在的区域。 比如说&#xff0c;网站左上角的logo&#xff0c;设计…

IDEA2021.1.2破解无限试用30天破解IDEA

安装包下载 IDEA安装包&#xff1a;Other Versions - IntelliJ IDEA破解包下载&#xff1a;文件 密码:c033 开始激活 IDEA 2021.1.3 运行, 中间会先弹出一个注册框&#xff0c;我们勾选 Evaluate for free, 点击 Evaluate&#xff0c; 先试用30天: 注意&#xff0c;如果没有…