[Linux_IMX6ULL驱动开发]-基础驱动

 驱动的含义

如何理解嵌入式的驱动呢,我个人认为,驱动就是嵌入式上层应用操控底层硬件的桥梁。因为上层应用是在用户态,是无法直接操控底层的硬件的。我们需要利用系统调用(open、read、write等),进入内核态,通过打开对应的设备节点,通过read、write等通过编写的驱动函数来操控设备节点。

如何编写驱动

总的来说,驱动编写的大体步骤如下所示:

1、确定驱动的主设备号

2、定义自己的file_operation结构体,这个结构体的成员包含了很多的函数指针

3、我们需要在驱动文件中实现对应的函数,传入结构体中

4、编写一个驱动入口函数(对应的,也需要一个驱动卸载函数)

5、在驱动入口函数中,把file_operation结构体注册到内核当中、创建节点(class)、创建设备(相应的在驱动卸载函数中定义结构体从内核中卸载、节点、设备的卸载方法)

6、使用如下两个宏分别修饰入口函数和出口函数

7、使用 MODULE_LICENSE("GPL"); 遵守GPL协议,否则无法使用

基于如上步骤,我们进行以下操作

首先,我们需要三个文件,一个作为底层驱动文件,一个是上层APP文件,一个是Makefile

驱动文件hello_driver.c
上层应用文件hello_drv.c
Makefile

刚开始我们可能不知道到底要包含什么头文件,我们可以学习Linux内核中的文件来进行参考,我们可以打开 Linux-4.9.88\drivers\char\misc.c ,把里面的头文件拷贝过来使用。

首先我们需要定义一个全局变量作为驱动的设备号,然后定义一个file_operation结构体。需要注意,这两个变量都是全局变量,因为需要被多个函数使用。

file_operation结构体需要多个函数指针成员,在这里,我们定义四个函数,把函数指针赋值给结构体成员

其中需要注意的是,驱动和上层直接读写是需要通过两个函数来进行的,分别是 copy_to_user 和  copy_from_user,前者用于驱动中读的驱动函数,后者用于驱动中写的函数

同时,结构体成员函数的形参,返回值必须严格遵守一样的原则,否则会报错

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>

/* 确定主设备号 */
static int major = 0;
/* 缓存数组 */
static char kernal_buf[1024];


/* 数据超过1024,限制为1024 */
#define data_num(a,b) ( (a) < (b) ? (a) : (b) )



/* 定义函数入口地址 */
static int hello_drv_open (struct inode *node, struct file *file)
{
	printk("%s %s %d \n",__FILE__,__FUNCTION__,__LINE__);
	return 0;
}


static ssize_t hello_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
	int return_size;
	printk("%s %s %d \n",__FILE__,__FUNCTION__,__LINE__);
	return_size = copy_to_user(buf, kernal_buf, data_num(1024,size));
	return return_size;
	
}
static ssize_t hello_drv_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
{
	int return_size;
	printk("%s %s %d \n",__FILE__,__FUNCTION__,__LINE__);
	return_size = copy_from_user(kernal_buf, buf, data_num(1024,size));
	return return_size;
	
}
static int hello_drv_rease (struct inode *node, struct file *file)
{
	printk("%s %s %d \n",__FILE__,__FUNCTION__,__LINE__);
	return 0;
}


/* 
	定义文件结构体
	读,写,打开,卸载
*/
static struct file_operations hello_driver = {
	.owner = THIS_MODULE,
	.open = hello_drv_open,
	.read = hello_drv_read,
	.write = hello_drv_write,
	.release = hello_drv_rease,
};

当我们为file_operation结构体的成员指定了对应的函数指针后,我们需要指定一个入口函数以及一个出口函数,并且在入口函数中,把file_operation注册到内核、节点的创建和设备的创建,在出口函数中完成上述三个的卸载(节点需要另外创建一个全局变量,struct class类型)

/* 节点的定义 全局变量 */
static struct class *hello_class;


/* 入口函数 */
static int __init hello_init(void)
{
	int err;
	printk("%s %s %d \n",__FILE__,__FUNCTION__,__LINE__);

	/* 注册结构体到内核后,返回主设备号 */
	major = register_chrdev(0, "hello", &hello_driver);
	//创建节点 /dev/hello
	hello_class = class_create(THIS_MODULE, "hello_class");
	err = PTR_ERR(hello_class);
	if (IS_ERR(hello_class))
	{
	
		printk("%s %s %d \n",__FILE__,__FUNCTION__,__LINE__);
		/* 创建失败的话摧毁内核中的hello结构体 */
		unregister_chrdev( major, "hello");
		return -1;
	}
	/* 创建了节点后,需要创建设备 */	
    device_create(hello_class, NULL, MKDEV(major, 0), NULL, "hello"); 

	return 1;
}


/* 出口函数 */
static void __exit hello_exit(void)
{
	printk("%s %s %d \n",__FILE__,__FUNCTION__,__LINE__);

	/* 把device卸载 */
	device_destroy(hello_class, MKDEV(major, 0));
	/* 把class卸载 */
	class_destroy(hello_class);

	/* 把file_operation从内核中卸载 */
	unregister_chrdev( major, "hello");

}

当写好了入口函数和出口函数后,还需通过两个宏声明,否则系统不知道这两个函数分别是入口函数和出口函数

/* 需要用某些宏表示上述两个函数分别是入口函数和出口函数 */
module_init(hello_init);
module_exit(hello_exit);

这就是一个驱动的具体框架了,整体完整代码如下

#include <linux/module.h>

#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>



/*  
	流程
	1.file_operation结构体,实现内部对应函数
	2.注册结构体到内核,同时使用宏声明入口和出口函数,指引进入
	3.创建节点,让上层应用函数可以打开 /dev/...,节点class创建完毕后,创建device
		class提供了一种更高层次的设备抽象,而device则代表了具体的硬件设备

*/


/* 确定主设备号 */
static int major = 0;
/* 缓存数组 */
static char kernal_buf[1024];
/* 节点的定义 */
static struct class *hello_class;



/* 读多少的宏定义 */
#define data_num(a,b) ( (a) < (b) ? (a) : (b) )





/* 定义函数入口地址 */
static int hello_drv_open (struct inode *node, struct file *file)
{
	printk("%s %s %d \n",__FILE__,__FUNCTION__,__LINE__);
	return 0;
}


static ssize_t hello_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
	int return_size;
	printk("%s %s %d \n",__FILE__,__FUNCTION__,__LINE__);
	return_size = copy_to_user(buf, kernal_buf, data_num(1024,size));
	return return_size;
	
}
static ssize_t hello_drv_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
{
	int return_size;
	printk("%s %s %d \n",__FILE__,__FUNCTION__,__LINE__);
	return_size = copy_from_user(kernal_buf, buf, data_num(1024,size));
	return return_size;
	
}
static int hello_drv_rease (struct inode *node, struct file *file)
{
	printk("%s %s %d \n",__FILE__,__FUNCTION__,__LINE__);
	return 0;
}


/* 
	定义文件结构体
	读,写,打开,卸载
*/
static struct file_operations hello_driver = {
	.owner = THIS_MODULE,
	.open = hello_drv_open,
	.read = hello_drv_read,
	.write = hello_drv_write,
	.release = hello_drv_rease,
};




/* 
	把结构体注册到内核
	为了能够把该结构体注册到内核
	需要init函数
*/
static int __init hello_init(void)
{
	int err;
	printk("%s %s %d \n",__FILE__,__FUNCTION__,__LINE__);

	/* 注册结构体到内核后,返回主设备号 */
	major = register_chrdev(0, "hello", &hello_driver);
	//创建节点 /dev/hello
	hello_class = class_create(THIS_MODULE, "hello_class");
	err = PTR_ERR(hello_class);
	if (IS_ERR(hello_class))
	{
	
		printk("%s %s %d \n",__FILE__,__FUNCTION__,__LINE__);
		/* 创建失败的话摧毁内核中的hello结构体 */
		unregister_chrdev( major, "hello");
		return -1;
	}
	/* 创建了节点后,需要创建设备 */	
    device_create(hello_class, NULL, MKDEV(major, 0), NULL, "hello"); 

	return 1;
}


/* 有注册函数就有卸载函数 */
static void __exit hello_exit(void)
{
	printk("%s %s %d \n",__FILE__,__FUNCTION__,__LINE__);

	/* 把device卸载 */
	device_destroy(hello_class, MKDEV(major, 0));
	/* 把class卸载 */
	class_destroy(hello_class);

	/* 把file_operation从内核中卸载 */
	unregister_chrdev( major, "hello");

}

/* 需要用某些宏表示上述两个函数分别是入口函数和出口函数 */
module_init(hello_init);
module_exit(hello_exit);

/* 遵循GPL协议 */
MODULE_LICENSE("GPL");



如上,驱动程序hello_driver.c就完成了 ,在这里我们通过上层应用来打开驱动节点,然后往里面写入数据,然后在从里面读取数据。应用的代码如下


#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

/*
 * ./hello_drv_test -w abc
 * ./hello_drv_test -r
 */
int main(int argc, char **argv)
{
	int fd;
	char buf[1024];
	int len;
	
	/* 1. 判断参数 */
	if (argc < 2) 
	{
		printf("Usage: %s -w <string>\n", argv[0]);
		printf("       %s -r\n", argv[0]);
		return -1;
	}

	/* 2. 打开文件 */
	fd = open("/dev/hello", O_RDWR);
	if (fd == -1)
	{
		printf("can not open file /dev/hello\n");
		return -1;
	}

	/* 3. 写文件或读文件 */
	if ((0 == strcmp(argv[1], "-w")) && (argc == 3))
	{
		len = strlen(argv[2]) + 1;
		len = len < 1024 ? len : 1024;
		write(fd, argv[2], len);
	}
	else
	{
		len = read(fd, buf, 1024);		
		buf[1023] = '\0';
		printf("APP read : %s\n", buf);
	}
	
	close(fd);
	
	return 0;
}



 同时,我们还需要编写Makefile,Makefile和具体的解析如下所示

1、KERN_DIR = /home/book/100ask_imx6ull-sdk/Linux-4.9.88

        定义了KERN_DIR变量,指向了内核的目录

2、all:

        标记了Makefile的第一个目标,执行make的时候执行

3、make -C $(KERN_DIR) M=`pwd` modules 

        -C $(KERN_DIR):这是make的一个选项,用于改变到另一个目录并读取那里的Makefile。这告诉make工具首先进入这个目录,并在那里查找Makefile。

        M=`pwd` modules:M的意思是指定模块源代码的的位置,当指定了module作为目标后,就是告诉系统想要构建内核模块。内核构建系统会查找当前目录(由M变量指定)中的模块源代码,并生成相应的模块文件(通常是.ko文件)。

4、$(CROSS_COMPILE)gcc -o hello_drv_test hello_drv_test.c 

        CROSS_COMPILE是环境变量,这列的意思是使用交叉编译器编译hello_drv_test.c 生成hello_drv_test.o。如果不存在交叉编译器会使用gcc

5、obj-m    += hello_driver.o

        这行告诉内核构建系统hello_driver.o是一个要构建的对象文件(即内核模块)


KERN_DIR = /home/book/100ask_imx6ull-sdk/Linux-4.9.88

all:
	make -C $(KERN_DIR) M=`pwd` modules 
	$(CROSS_COMPILE)gcc -o hello_drv_test hello_drv_test.c 

clean:
	make -C $(KERN_DIR) M=`pwd` modules clean
	rm -rf modules.order
	rm -f hello_drv_test

obj-m	+= hello_driver.o

驱动的安装、卸载和现象

当我们在服务器上面编译完成后,会生成如下几个文件

我们通过挂载,把这两个文件挂载到开发板上

当前挂载的目录下存在 hello_driver.ko  hello_drv_test这两个文件。

首先,我们需要安装驱动,使用 insmod + 驱动名 ,来安装驱动

(lsmod也可以查看安装的驱动程序)

如上图,驱动程序成功的安装了

在这里我们使用应用文件写入驱动程序,再从中读出

当我们不使用驱动的时候,使用 rmmod+驱动名 卸载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/495260.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

好看又好用,这 10 个宝藏 App 免费拿走不谢!

目录 1. 综合AI工具箱——HuluAI 2. 文本视频生成工具——Jujilu 3.翻译软件 —— TTime 4.专业录屏和直播软件 —— OBS Studio 5.开源跨平台轻量计时软件 —— wnr 6.开源跨平台绘图 —— Drawio 7.开源三维建模动画渲染 —— Blender 8.跨平台的多功能软件 —— Pear…

小满CRM怎么样,多少外贸公司在用?

我们在20年用过小满CRM&#xff0c;产品很明显是围绕着外贸业务场景设计的&#xff0c;功能很多&#xff0c;但价格相对来说也算贵的了&#xff0c;看了其他用户的使用感受发现小满的数据安全和服务器方面可能也有点问题。 我们最后选择了零代码平台自主搭建了一个CRM系统&…

4.Python数据分析—数据分析入门知识图谱索引(知识体系下篇)

4.Python数据分析—数据分析入门知识图谱&索引-知识体系下篇 一个人简介二机器学习基础2.1 监督学习与无监督学习2.1.1 监督学习&#xff1a;2.1.2 无监督学习&#xff1a; 2.2 特征工程2.3 常用机器学习算法概述2.3.1 监督学习算法&#xff1a;2.3.2 无监督学习算法&#…

拿下阿里面试:揭秘JVM对象引用的奥秘!

如有疑问或者更多的技术分享,欢迎关注我的微信公众号“知其然亦知其所以然”! 大家好,我是小米!今天我要和大家一起探讨的是JVM中的对象引用,这也是阿里巴巴面试中经常被问到的热门话题哦!在Java开发中,我们经常需要管理对象的引用,了解不同类型的引用对于优化内存、避…

【一】TensorFlow神经网络模型构建之神经元函数及优化方法

TensorFlow神经网络模型构建主要涉及如下几块&#xff1a;神经元函数、卷积函数、池化函数、分类函数、优化方法。下面分别对这几块进行展开说明&#xff1a; 神经元函数及优化方法 神经网络之所以能解决非线性问题&#xff08;如语音、图像识别等&#xff09;&#xff0c;本…

web学习笔记(四十七)

目录 1. node.js中的三个全局变量 1.1 global 1.2 __dirname 文件夹的绝对路径 1.3 __filename 文件名的绝对路径 2.模块化 2.1 什么是模块化 2.2 模块化的好处 3. Node.js 中模块化 3.1 Node.js 中的模块化规范 4. Node.js 中的模块作用域 4.1module 对象 4.2 mod…

自定义你的商店 – 设计WooCommerce商店的新方法

WooCommerce 8.8即将推出&#xff0c;带来了一种无需代码即可创建精美商店的新方法。向“自定义你的商店”问好&#xff0c;这是一项全新功能&#xff0c;将取代“个性化你的商店”入门步骤。 自定义你的商店将利用最新的WordPress站点编辑工具以及酷炫的新Pattern Assembler …

深兰科技陈海波:生成式AI,新一轮知识生产力革命

3月26日&#xff0c;AIoT创新技术赋能工业数字化高峰论坛在上海市宝山区临港南大数智中心隆重举行。活动吸引了诸多行业内的专家学者、企业家及金融投资机构、政府园区、用户等多位业界精英出席&#xff0c;共同探讨该领域面临的挑战与机遇&#xff0c;分享最新的科研成果和技术…

【信号处理】基于DGGAN的单通道脑电信号增强和情绪检测(tensorflow)

关于 情绪检测&#xff0c;是脑科学研究中的一个常见和热门的方向。在进行情绪检测的分类中&#xff0c;真实数据不足&#xff0c;经常导致情绪检测模型的性能不佳。因此&#xff0c;对数据进行增强&#xff0c;成为了一个提升下游任务的重要的手段。本项目通过DCGAN模型实现脑…

【动手学深度学习】深入浅出深度学习之线性神经网络

目录 &#x1f31e;一、实验目的 &#x1f31e;二、实验准备 &#x1f31e;三、实验内容 &#x1f33c;1. 线性回归 &#x1f33b;1.1 矢量化加速 &#x1f33b;1.2 正态分布与平方损失 &#x1f33c;2. 线性回归的从零开始实现 &#x1f33b;2.1. 生成数据集 &#x…

泛微表单添加自定义按钮

页面效果&#xff1a; 点击按钮&#xff0c;将参数字段对应的值传入链接中。 表单配置如下&#xff1a; 然后插入js代码块&#xff0c;代码如下&#xff1a; <script> jQuery(document).ready(function(){ //在表单的按钮单元格插入自定义属性&#xff1a;ID&#xff1…

三级等保建设技术方案-Word

1信息系统详细设计方案 1.1安全建设需求分析 1.1.1网络结构安全 1.1.2边界安全风险与需求分析 1.1.3运维风险需求分析 1.1.4关键服务器管理风险分析 1.1.5关键服务器用户操作管理风险分析 1.1.6数据库敏感数据运维风险分析 1.1.7“人机”运维操作行为风险综合分析 1.2…

云能耗管理系统在某高校建筑系统平台的开发与应用

摘要&#xff1a;依据本项目依托某学院的电能计量管理系统、给水计量监管系统以及供热计量管理系统等基础平台&#xff0c;制订了高等学校建筑能耗综合管理系统平台应用的总体框架和方案&#xff0c;该系统可以对校园建筑的各种用能情况进行实时监测、统计能耗、进行能效分析&a…

DVWA-CSRF通关教程-完结

DVWA-CSRF通关教程-完结 文章目录 DVWA-CSRF通关教程-完结Low页面使用源码分析漏洞利用 Medium源码分析漏洞利用 High源码分析漏洞利用 impossible源码分析 Low 页面使用 当前页面上&#xff0c;是一个修改admin密码的页面&#xff0c;只需要输入新密码和重复新密码&#xff…

全局UI方法-弹窗三-文本滑动选择器弹窗(TextPickDialog)

1、描述 根据指定的选择范围创建文本选择器&#xff0c;展示在弹窗上。 2、接口 TextPickDialog(options?: TextPickDialogOptions) 3、TextPickDialogOptions 参数名称 参数类型 必填 参数描述 rang string[] | Resource 是 设置文本选择器的选择范围。 selected nu…

聚酰亚胺PI材料难于粘接,用什么胶水粘接?那么让我们先一步步的从认识它开始(十一): 聚酰亚胺PI纤维

聚酰亚胺PI纤维 聚酰亚胺PI纤维是由聚酰亚胺制成的纤维材料&#xff0c;是一种非常高性能的工程纤维材料。它具有极强的耐温性、耐化学性、耐热性和耐磨性等特点。具体来说&#xff0c;聚酰亚胺PI纤维的耐温性能非常突出&#xff0c;可以承受高达300℃以上的高温条件而不流失或…

热爱负压自动排渣放水器向光而行

你还很年轻&#xff0c;将来你会遇到很多人&#xff0c; 经历很多事&#xff0c;得到很多&#xff0c;也会失去很多&#xff0c; 但无论如何有两样东西&#xff0c;你绝不能丢弃&#xff0c; 一个叫良心&#xff0c;另一个叫理想。 热爱负压自动排渣放水器向光而行 一、概述 【…

目标检测+车道线识别+追踪

一种方法&#xff1a; 车道线检测-canny边缘检测-霍夫变换 一、什么是霍夫变换 霍夫变换&#xff08;Hough Transform&#xff09;是一种在图像处理和计算机视觉中广泛使用的特征检测技术&#xff0c;主要用于识别图像中的几何形状&#xff0c;尤其是直线、圆和椭圆等常见形状…

[密码学] 密码学基础

目录 一 为什么要加密? 二 常见的密码算法 三 密钥 四 密码学常识 五 密码信息威胁 六 凯撒密码 一 为什么要加密? 在互联网的通信中&#xff0c;数据是通过很多计算机或者通信设备相互转发&#xff0c;才能够到达目的地,所以在这个转发的过程中&#xff0c;如果通信包…

MySql实战--普通索引和唯一索引,应该怎么选择

在前面的基础篇文章中&#xff0c;我给你介绍过索引的基本概念&#xff0c;相信你已经了解了唯一索引和普通索引的区别。今天我们就继续来谈谈&#xff0c;在不同的业务场景下&#xff0c;应该选择普通索引&#xff0c;还是唯一索引&#xff1f; 假设你在维护一个市民系统&…